Decimal Operations

Tasks: Each task requires students to use what they know of operations with fractions to determine the missing values.

Task #1:

Task #2:

Jen, Terry, Cheryl, Ben, and Aaron have spare change in their pockets. Each person has a different amount: \$9.38, \$7.52, \$3.62, \$4.73 and \$1.27.

Together, Terry and Aaron have \$10.65. Together, Terry and Ben have \$13.00. Together, Cheryl and Aaron have \$6.00. Doubled, Cheryl will have \$9.46

Fraction Operations

<u>Directions</u>: For each section a number bank is provided. Using the numbers from the bank only once, complete the missing parts of each equation.

Task #2

Need help?

<u>https://www.khanacademy.org/math/cc-seventh-grade-math/cc-7th-fractions-</u> <u>decimals</u>

Order of Operations

When evaluating numeric expressions, we complete the mathematical operations in a set order: Parenthesis, Exponents, Multiplication and Division, Addition and Subtraction (PEMDAS). Use the order of operations to answer each question.

Example 1: Determine the smallest non-negative number that you can make from 2, 3, 5, 7, and 11. You may only use each operation (+, -, x, ÷) once.
Response: [(11 + 3) - (2 × 7)] / 5 = 0

Example 2: Using 1, 7, 8, 9, and 9 create a problem in which the answer equals 16. You may use operations more than once.

Response: $(9 \div 9) \times (7 + 8 + 1) = 16$

- Using 1, 3, 5, 9, and 9 create a problem in which the answer equals 5. You may use operations more than once. Answers may vary.
- Using 8, 11, 9, 1, and 8 create a problem in which the answer equals 2. You may use operations more than once.
 Answers may vary.
- Using 4, 16, 10, 24, and 25 create a problem in which the answer equals 1. You may use operations more than once. Answers may vary.

Need help?

https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-factors-andmultiples/cc-6th-order-operations/v/introduction-to-order-of-operations

Laws of Exponents

Adding powers	$a^m a^n = a^{m+n}$
Multiplying powers	$(a^m)^n = a^{mn}$
Subtracting powers	$\frac{a^m}{a^n} = a^{m-n}$
Negative powers	$a^{-n} = \frac{1}{a^n}$
To the zero power	$a^{0} = 1$

Exercises: Simplify the following problems using exponents (Do not multiply out). EX #1: $2^{3}(2^{7}) = 2^{10}$ EX #2: $(2^{3})^{7} = 2^{21}$ EX #3: $2^{7} \div 2^{3} = 2^{4}$

1. $4^4(4^5) = 4^9$	2. $(4^4)^5 = 4^{20}$	3. $x^{3}y^{7}(x^{4}y^{6})=$ $x^{7}y^{13}$
4. 9 ⁴ (9 ⁻¹⁰) =	5. 9 ⁴ (9 ⁻¹⁰) 9 ⁶ =	6. $x^{21}y^4 \div x^3y^2 =$
9-6	9129-6	x^7y^2

For the next set, fill each blank with an exponent or exponents that would make the equation true.

13. For what values of *n* will $(2^n)^n < (2^n)(2^n)$? Give examples of those values in your explanation.

When n<2. Ex: $(2^1)^1 = 2$ and $(2^1)(2^1) = 4$. $(2^2)^2 = 16$ and $(2^2)(2^2) = 16$. $(2^3)^3 = 512$ and $(2^3)(2^3) = 64$ Need help?

https://www.khanacademy.org/math/algebra/exponent-equations/exponentproperties-algebra/v/exponent-properties-1

Perfect Squares Roots and Square Roots

Task #1: In this task you will be given clues about particular perfect squares and square roots. Using the clues name the perfect square.

EXAMPLE: Doubled, my value is -12, but my product is the 36. What number am I? -6

1. Doubled, my value is 18, but my product is 81. What number am I? _9____

2. Doubled, my value is 22, but my product is 121. What number am I? ___1

3. Doubled, my value is 16, but my product is 64. What number am I? _8____

Task #2: Complete the table below. In the table you must complete the area diagram, the equivalent expression, the exponent form and the value.

Area Model	Equivalent Expression	Exponential Form	Value
	2 x 2	2 ²	4
	3×3	3 ²	9
	5 x 5	5 ²	25
	4×4	4 ²	16
Image: Section of the section of t	6x6	6 ²	36

Integer Operations: Addition and Subtraction of Integers

Laws for Addition and Subtraction of Integers:

Ex #1:	4 + -3 = 4 - 3 = 1	Ex #2:	4 + -5 = 4 - 5 = -1
Ex #3:	-4 + -5 = -9	Ex #4:	-4 + 5 = 1
Ex #5:	45 = 4 + 5 = 9	Ex #6:	-45 = -4 + 5 = 1

Task: Determine the value (or values) of n that would satisfy the equation. Example: n - 4 = a negative number.

Response: N must be a number less than 4. If n is 4 or more, the answer is not negative. For example 5 - 4 = +1 and 4 - 4 = 0. But if we use a number less than 4, it will be negative. For example 3 - 4 = -1 and -2 - 4 = -6.

1. n + 4 = a negative number.

n < -4

If n is greater than -4, the answer is not negative. For example -7 +4 = -3 and -5 + 4 = -1.

n > 9

2. 9 - n = a positive number.

3. For what values of a is a > a + a? In your answer give examples of values of a which make the inequality true.

a < 0

4. For what values of n is 4 - n > n? In your answer give examples of values of n which make the inequality true.

n < 2

Need help?

https://www.khanacademy.org/math/cc-seventh-grade-math/cc-7th-negativenumbers

BCMS Summer Mathematics Packet - ANSWER KEY

Integer Operations: Multiplication and Division of Integers

Laws for Addition and Subtraction of Integers:

Ex #1:	4(-3) = -12	Ex #2:	-4(-3) = 12
Ex #3:	-10 ÷ 5 = -2	Ex #4:	-10 ÷ -5 = 2

Task: Determine the values of n that would satisfy the equation.

Example: -6n = some positive number.

Response: In order for -6n to be a positive number, n must be any negative number. The product of two negatives is always positive. For example, -6(-2) = +12. If n is a positive number, the product would still be negative. Therefore, n must be negative to get a positive answer.

1. -4n = some negative number.

In order for -4n to be a negative number, n must be positive. (etc.)

2. -4n = some positive number that is greater than 28.

In order for -4n to be a positive number, n must be negative. (etc.)

3. 100 ÷ n = some negative number between -20 and -1 -100 < n < -5 (etc.)

4. $(-3)^n$ = a positive number. n must be an even number or zero. For example, 0, 2, 4, 6, and so forth.

5. For what values of a is -2a > a? In your answer give examples of values of a that make the inequality true. Negative values.

Need help?

https://www.khanacademy.org/math/cc-seventh-grade-math/cc-7th-negativenumbers Solving Equations

Task #1: Solve the following problems. SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page.

14h - 6 = 22	2. $\frac{m}{-5}$ + 6 = -4	3. $-25 = -4r + 5$
x/	m - 50	r - 7.5
	4. 6 = -7 + $\frac{x}{-3}$	5. 5g - 3 = -12
	X = 39	g = -9/5

Task #2: For each equation, determine if the equation is always true, never true or sometimes true. If the equation is sometimes true, determine the numbers that make it true.

6. 6y + 5 = 4y + 57. 5x + 8 = 8 + 5x8. 7p - 8 = 7p + 6NeverAlwaysNever

9. $x^2 = 100$ Sometimes (x = 10 and x = -10) 10. -2(6 - 10n) = 10(2n - 6)Never 11. 7(1 - y) = -3(y - 2)Sometimes (y = $\frac{1}{4}$)

Need Help? <u>https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-solving-equations</u>

Inequalities

Task #1. Solve each inequality and then graph the solution set on the number line. Remember that when multiplying or dividing by negative numbers, you must reverse the inequality.

1. 13 < 9 + 2x	$\leftarrow + + + + + + + + + + + \rightarrow$
<i>x</i> < 2	open circle at x = 2, arrow to the left
22x + 5 <u>></u> -12	$\underbrace{+++++++++}$
$x \le 8.5$	closed circle at x = 8.5, arrow to the left
3. ¹ / ₄ x + 9 < 2	$\langle + + + + + + + + + + + \rangle$

x < -28

open circle at x = -28, arrow to the left

Task #2:

4. Given: A > O and B < O. Is A < A(B)? No.

5. Given: 5 > 4. For what values of x is 5x > 4x? x>0.

Need Help? https://www.khanacademy.org/math/algebra/linear_inequalities