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1. Read Chapter 1.

2. On a separate paper to be turned in on the second day of
school, Answer the questions at the end of chapter 1 and at the
end of the study guide of chapter 1



Introduction
This topic is different from other topics in the in the context of other subject matter. Although
course book. The content discussed here will be you may wish to do so, you would not be
used in most aspects of your studies in physics. expected to read this topic in one go, rather you
You will come across many aspects of this work would return to it as and when it is relevant.
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Understanding @ Applications and skills

-> Fundamental and derived Sl units

= Using Sl units in the correct format for all
Scientific notation and metric multipliers required measurements, final answers to
Significant figures calculations and presentation of raw and
Orders of magnitude processed data

Estimation Using scientific notation and metric multipliers

Quoting and comparing ratios, values, and
approximations to the nearest order of
magnitude

Estimating quantities to an appropriate number
of significant figures
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In physics you will deal with the qualitative and the with words than symbols and vice-versa. Itis
quantitative, thatis, descriptions of phenomena impossible to avoid either methodology on the IB
using words and descriptions using numbers. When Diploma course and you must learn to be careful with
we use words we need to interpret the meaning and both your numbers and your words. In examinations
one person's interpretation will not necessarily be you are likely to be penalized by writing contradictory
the same as another's. When we deal with numbers statements or mathematically incorrect ones. At the
(or equations), providing we have learned the rules, outset of the course you should make sure that you
there is no mistaking someone else's meaning. Itis understand the mathematical skills that will make
likely that some readers will be more comfortable you into a good phuysicist.




MEASUREMENTS AND UNCERTAINTIES

Quantities and units

Physicists deal with physical quantities, which are those things
that are measureable such as mass, length, time, electrical current,
etc. Quantities are related to one another by equations such as

p= % which is the symbolic form of saying that density is the ratio
of the mass of an object to its volume. Note that the symbols in the
equation are all written in italic (sloping) fonts — this is how we
can be sure that the symbols represent quantities. Units are always
written in Roman (upright) font because they sometimes share the

same symbol with a quantity. So “m” represents the quantity “mass

”

but “m” represents the unit “metre”. We will use this convention
throughout the course book, and it is also the convention used by

the IB.

@ Nature of science

The use of symbols

The use of Greek letters such as rho (p) is very
common in physics. There are so many quantities
that, even using the 52 Arabic letters (lower case
and capitals), we soon run out of unique symbols.
Sometimes symbols such as 4 and x have multiple
uses, meaning that Greek letters have become just
one way of trying to tie a symbol to a quantity
uniquely. Of course, we must consider what
happens when we run out of Greek letters too — we
then use Russian ones from the Cyrillic alphabet.

Greek Russian
A « alpha N v nu Aa 32 B6 Bs I'r [ln Ee
B B beta Z €| ksi Kk 33 33 Mn Wit Kk
I' 4 gamma O o omicron 11 My HiHg Oo Iln
ATY delta II|x pi Pp Ce Tt Yy ¥§ O¢
E e epsilon Plp rho Xx M Y Ml bl
Z ¢ zeta ¥ o sigma Sl A
H n eta TiT tau
© 0 theta Y (v upsilon
I v iota d [ phi
K k& kappa X x| chi
AN lambda ¥ 4 psi
M p mu () w omega

Fundamental quantities are those quantities that are considered to be
so basic that all other quantities need to be expressed in terms of them.
In the density equation p = % only mass is chosen to be fundamental
(volume being the product of three lengths), density and volume are
said to be derived quantities.

It is essential that all measurements made by one person are understood
by others. To achieve this we use units that are understood to have
unambiguous meaning. The worldwide standard for units is known as
SI — Systeme international d'unités. This system has been developed from
the metric system of units and means that, when values of scientific
quantities are communicated between people, there should never be
any confusion. The SI defines both units and prefixes — letters used

to form decimal multiples or sub-multiples of the units. The units

themselves are classified as being either fundamental (or base), derived,
and supplementary.

There are only two supplementary units in SI and you will meet only
one of these during the Diploma course, so we might as well mention
them first. The two supplementary units are the radian (rad) — the

unit of angular measurement and the steradian (sr) — the unit of “solid
angle”. The radian is a useful alternative to the degree and is defined as
the angle subtended by an arc of a circle having the same length as the radius,



1.1 MEASUREMENTS IN PHYSICS

as shown in figure 1. We will look at the radian in more detail in
Sub-topic 6.1. The steradian is the three-dimensional equivalent of
the radian and uses the idea of mapping a circle on to the surface of
a sphere.

Fundamental and derived units

In SI there are seven fundamental units and you will use six of these
on the Diploma course (the seventh, the candela, is included here for
completeness). The fundamental quantities are length, mass, time,
electric current, thermodynamic temperature, amount of substance, and
luminous intensity. The units for these quantities have exact definitions
and are precisely reproducible, given the right equipment. This means
that any quantity can, in theory, be compared with the fundamental
measurement to ensure that a measurement of that quantity is accurate.
In practice, most measurements are made against more easily achieved
standards so, for example, length will usually be compared with a
standard metre rather than the distance travelled by light in a vacuum.
You will not be expected to know the definitions of the fundamental
quantities, but they are provided here to allow you to see just how
precise they are.

metre (m): the length of the path travelled by light in a vacuum during

. . 1
a time interval of 399793 458 of a second.

kilogram (kg): mass equal to the mass of the international prototype
of the kilogram kept at the Bureau International des Poids et Mesures at
Sevres, near Paris.

second (s): the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of the caesium-133 atom.

ampere (A): that constant current which, if maintained in two
straight parallel conductors of infinite length, negligible circular
cross-section, and placed 1 m apart in vacuum, would produce between
these conductors a force equal to 2 x 10 7 newtons per metre of length.

1

kelvin (K): the fraction 318

triple point of water.

of the thermodynamic temperature of the

mole (mol): the amount of substance of a system that contains as many
elementary entities as there are atoms in 0.012 kg of carbon-12. When
the mole is used, the elementary entities must be specified and may be
atoms, molecules, ions, electrons, other particles, or specified groups of
such particles.

candela (cd): the luminous intensity, in a given direction, of a source
that emits monochromatic radiation of frequency 540 x 10'? hertz and
1

that has a radiant intensity in that direction of -z watt per steradian.

All quantities that are not fundamental are known as derived and these

can always be expressed in terms of the fundamental quantities through a
relevant equation. For example, speed is the rate of change of distance with
respect to time or in equation form v = % (where As means the change in
distance and At means the change in time). As both distance (and length)
and time are fundamental quantities, speed is a derived quantity.

7
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Figure 1 Definition of the radian.

Figure 2 The international prototype kilogram.

TOK

Deciding on what is
fundamental

Who has made the decision
that the fundamental
quantities are those of
mass, length, time, electrical
current, temperature,
luminous intensity, and
amount of substance? In an
alternative universe it may
be that the fundamental
quantities are based on force,
volume, frequency, potential
difference, specific heat
capacity, and brightness.
Would that be a drawback
orwould it have meant that
“humanity” would have
progressed at a faster rate?
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If you are reading this at the
start of the course, it may seem
that there are so many things
that you might not know; but,
take heart, “Rome was not
builtin a day” and soon much
will come as second nature.
When we write unitsas ms*
and ms~?itis a more effective
and preferable way to writing
whatyou may have written in
the past as m/s and m/s? both
forms are still read as “metres
per second” and “metres per
second squared.”

Figure 3 Choosing fundamental units in
an alternative universe.

The units used for fundamental quantities are unsurprisingly known as
fundamental units and those for derived quantities are known as derived
units. It is a straightforward approach to be able to express the unit of
any quantity in terms of its fundamental units, provided you know the
equation relating the quantities. Nineteen fundamental quantities have
their own unit but it is also valid, if cumbersome, to express this in terms
of fundamental units. For example, the SI unit of pressure is the pascal
(Pa), which is expressed in fundamental units as m 'kgs 2.

@ Nature of science
Capitals or lower case?

Notice that when we write the unit newton in full, we use a lower case
n but we use a capital N for the symbol for the unit — unfortunately
some word processors have default setting to correct this so take care!
All units written in full should start with a lower case letter, but those
that have been derived in honour of a scientist will have a symbol that
is a capital letter. In this way there is no confusion between the scientist
and the unit: “Newton” refers to Sir Isaac Newton but “newton” means
the unit. Sometimes units are abbreviations of the scientist’s surname,
so amp (which is a shortened form of ampere anyway) is named after
Ampere, the volt after Volta, the farad, Faraday, etc.

Example of how to relate fundamental and derived units

The unit of force is the newton (N). This is a derived unit and can

be expressed in terms of fundamental units as kg m s 2. The reason

for this is that force can be defined as being the product of mass and
acceleration or F = ma. Mass is a fundamental quantity but acceleration
is not. Acceleration is the rate of change of velocity or a = i—‘t’ where Av
represents the change in velocity and At the change in time. Although
time is a fundamental quantity, velocity is not so we need to take
another step in defining velocity in fundamental quantities. Velocity is
the rate of change of displacement (a quantity that we will discuss later
in the topic but, for now, it simply means distance in a given direction).
So the equation for velocity is v = % with As being the change in
displacement and At again being the change in time. Displacement (a
length) and time are both fundamental, so we are now in a position to
put N into fundamental units. The unit of velocity is ms ' and these are
already fundamental - there is no shortened form of this. The units of
acceleration will therefore be those of velocity divided by time and so
will be ™3~ which is written as ms 2. So the unit of force will be the unit
of mass multiplied by the unit of acceleration and, therefore, be kgms 2.
This is such a common unit that it has its own name, the newton,

(N = kgms ? — a mathematical way of expressing that the two units are
identical). So if you are in an examination and forget the unit of force
you could always write kgms 2 (if you have time to work it out!).

Significant figures

Calculators usually give you many digits in an answer. How do you
decide how many digits to write down for the final answer?
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Scientists use a method of rounding to a certain number of significant
figures (often abbreviated to s.f.). “Significant” here means meaningful.

Consider the number 84 072, the 8 is the most significant digit, because
it tells us that the number is eighty thousand and something. The 4 is
the next most significant telling us that there are also four thousand and
something. Even though it is a zero, the next digit, the 0, is the third
most significant digit here.

When we face a decimal number such as 0.00245, the 2 is the most
significant digit because it tells us that the number is two thousandth
and something. The 4 is the next most significant, showing that there are
four ten thousandths and something.

If we wish to express this number to two significant figures we need to
round the number from three to two digits. If the last number had been
0.00244 we would have rounded down to 0.0024 and if it had been
0.00246 we would have rounded up to 0.0025. However, it is a 5 so what
do we do? In this case there is equal justification for rounding up and
down, so all you really need to be is consistent with your choice for a set of
figures — you can choose to round up or down. Often you will have further
digits to help you, so if the number had been 0.002451 and you wanted it
rounded to two significant figures it would be rounded up to 0.0025.

Some rules for using significant figures

e A digit that is not a zero will always be significant — 345 is three
significant figures (3 s.f.).

e Zeros that occur sandwiched between non-zero digits are always
significant — 3405 (4 s.f.); 10.3405 (6 s.1.).

e Non-sandwiched zeros that occur to the left of a non-zero digit are
not significant — 0.345 (3 s.f); 0.034 (2 s.f.).

e Zeros that occur to the right of the decimal point are significant,
provided that they are to the right of a non-zero digit — 1.034 (4 s.f.);
1.00 (3 s.f.); 0.34500 (5 s.f.); 0.003 (1 s.f.).

e  When there is no decimal point, trailing zeros are not significant
(to make them significant there needs to be a decimal point)
—400 (1 s.t.); 400. (3 s.f.) — but this is rarely written.

Scientific notation

One of the fascinations for physicists is dealing with the very large

(e.g. the universe) and the very small (e.g. electrons). Many physical
constants (quantities that do not change) are also very large or very
small. This presents a problem: how can writing many digits be avoided?
The answer is to use scientific notation.

The speed of light has a value of 299 792 458 ms~'. This can be rounded to
three significant figures as 300 000 000 ms~'. There are a lot of zeros in this
and it would be easy to miss one out or add another. In scientific notation
this number is written as 3.00 x 108 m s~! (to three significant figures).

Let us analyse writing another large number in scientific notation. The
mass of the Sun to four significant figures is 1 989 000 000 000 000 000
000 000 000 000 kg (that is 1989 and twenty-seven zeros). To convert

o
\ 3
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this into scientific notation we write it as 1.989 and then we imagine
moving the decimal point 30 places to the left (remember we can write
as many trailing zeros as we like to a decimal number without changing
it). This brings our number back to the original number and so it gives
the mass of the Sun as 1.989 x 10°° kg.

A similar idea is applied to very small numbers such as the charge on
the electron, which has an accepted value of approximately 0.000 000
000 000 000 000 1602 coulombs. Again we write the coefficient as 1.602
and we must move the decimal point 19 places to the right in order to
bring 0.000 000 000 000 000 000 1602 into this form. The base is always
10 and moving our decimal point to the right means the exponent is
negative. We can write this number as 1.602 x 107" C.

Apart from avoiding making mistakes, there is a second reason why
scientific notation is preferable to writing numbers in longhand. This is
when we are dealing with several numbers in an equation. In writing
the value of the speed of light as 3.00 x 10 ms™!, 3.00 is called the
“coefficient” of the number and it will always be a number between 1
and 10. The 10 is called the “base” and the 8 is the “exponent”.

There are some simple rules to apply:

e  When adding or subtracting numbers the exponent must be the
same or made to be the same.

e  When multiplying numbers we add the exponents.

e  When dividing numbers we subtract one exponent from the other.

e When raising a number to a power we raise the coefficient to the
power and multiply the exponent by the power.

Worked examples

In these examples we are going to evaluate each
of the calculations.

1 1.40 x 10°+ 3.5 x 10°

Solution

These must be written as 1.40 x 10° + 0.35 x 10°
so that both numbers have the same exponents.

They can now be added directly to give 1.75 x 10°
2 3.7x10°x 2.1 x108
Solution

The coefficients are multiplied and the exponents
are added, so we have: 3.7 x 2.1 = 7.77 (which we
round to 7.8 to be in line with the data — something
we will discuss later in this topic) and: 5 + 8 = 13

So we write this product as: 7.8 x 10"
3 3.7x10°x21x10¢%
Solution

Again the coefficients are multiplied and the
exponents are added, so we have: 3.7 x 2.1 = 7.8

Here the exponents are subtracted (since the 8 is
negative) to give: 5 — 8 = —3

So we write this product as: 7.8 x 10°?

5

4 4.8 x 10

3.1 x 102
Solution

The coefficients are divided and the exponents are
subtracted so we have: 4.8 = 3.1 = 1.548 (which
we round to 1.5)

And5—-2=3

This makes the result of the division 1.5 x 10°
5 (3.6 x 107)°

Solution

We cube 3.6 and 3.6> = 46.7

And multiply 7 by 3 to give 21

This gives 46.7 x 10?!, which should become
4.7 x 10** in scientific notation.
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Metric multipliers (prefixes)

Scientists have a second way of abbreviating units: by using metric 10;: yotta ;
multipliers (usually called “prefixes”). An SI prefix is a name or 1318 zi:a E
associated symbol that is written before a unit to indicate the 105 e p
appropriate power of 10. So instead of writing 2.5 x 10'* J we could 10t2 P— T
alternatively write this as 2.5 TJ (terajoule). Figure 4 gives the 20 SI 109 giga G
prefixes — these are provided for you as part of the data booklet used 108 mega M
in examinations. 103 kilo k
102 hecto h

. 1 deka 8

Orders of magnitude —
An important skill for physicists is to understand whether or not the 102 centi ¢
physics being considered is sensible. When performing a calculation in 10-3 mill L
which someone’s mass was calculated to be 5000 kg, this should ring 10-° BilElD "
alarm bells. Since average adult masses (“weights”) will usually be 10:32 nano 1
60-90 kg, a value of 5000 kg is an impossibility. 18_15 Z::m If)
A number rounded to the nearest power of 10 is called an order of ilg=ie atto a
magnitude. For example, when considering the average adult human (=21 zepto z
mass: 60-80 kg is closer to 100 kg than 10 kg, making the order of 1024 yocto y
magnitude 102 and not 10'. Of course, we are not saying that all adult Figure 4 Sl metric multipliers.

humans have a mass of 100 kg, simply that their average mass is closer
to 100 than 10. In a similar way, the mass of a sheet of A4 paper may be
3.8 g which, expressed in kg, will be 3.8 x 10 kg. Since 3.8 is closer to
1 than to 10, this makes the order of magnitude of its mass 10 kg. This
suggests that the ratio of adult mass to the mass of a piece of paper (should
you wish to make this comparison)= 11(?_23 = 10>~ =10°>= 100 000. In
other words, an adult human is 5 orders of magnitude (5 powers of 10)
heavier than a sheet of A4 paper.

Estimation

Estimation is a skill that is used by scientists and others in order to
produce a value that is a useable approximation to a true value.
Estimation is closely related to finding an order of magnitude, but may
result in a value that is more precise than the nearest power of 10.

Whenever you measure a length with a ruler calibrated in millimetres
you can usually see the whole number of millimetres but will need to

estimate to the next % mm — you may need a magnifying glass to help
you to do this. The same thing is true with most non-digital measuring
instruments.

Similarly, when you need to find the area under a non-regular curve,
you cannot truly work out the actual area so you will need to find the
area of a rectangle and estimate how many rectangles there are. Figure 5
shows a graph of how the force applied to an object varies with time.
The area under the graph gives the impulse (as you will see in Topic 2).
There are 26 complete or nearly complete yellow squares under the
curve and there are further partial squares totalling about four full
squares in all. This gives about 30 full squares under the curve. Each
curve has an area equivalent to 2 N x 1 s = 2 Ns. This gives an estimate
of about 60 N's for the total impulse.
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In an examination, estimation questions will always have a
tolerance given with the accepted answer, so in this case it might be

(60 + 2) Ns.

12 A
10 H

force/N

These two partial
squares may be
combined to approximate
to a whole square, etc.

Figure 5

T T I 1

5 6 7 8

time/s

1.2 Uncertainties and errors

Understanding

= Random and systematic errors

- Absolute, fractional, and percentage uncertainties
=> Errorbars

=> Uncertainty of gradient and intercepts

@ Nature of science

In Sub-topic 1.1 we looked at the how we define
the fundamental physical quantities. Each of these
is measured on a scale by comparing the quantity
with something that is “precisely reproducible”. By
precisely reproducible do we mean “exact”? The
answer to this is no. If we think about the definition
of the ampere, we will measure a force of 2 x 10° N.
If we measure itto be 2.1 x 107 itdoesn’tinvalidate
the measurement since the definition is given to just
one significant figure. All measurements have their
limitations or uncertainties and it is important that
both the measurer and the person working with the
measurement understand what the limitations are.
This is why we must always consider the uncertainty
in any measurement of a physical quantity.

@ Applications and skills

=> Explaining how random and systematic errors
can be identified and reduced

- Collecting data that include absolute and/or
fractional uncertainties and stating these as an
uncertainty range (using %)

=> Propagating uncertainties through calculations
involving addition, subtraction, multiplication,
division, and raising to a power

=> Using error bars to calculate the uncertainty in
gradients and intercepts

Equations

Propagation of uncertainties:
If:y=a=xb

then: Ay = Aa + Ab

Ify =22

then: 4 = 49 4 20 | Ac
If:y=a"

Ay . Aa
thenZT = |nT




1.2 UNCERTAINTIES AND ERRORS

Uncertainties in measurement
Introduction

No experimental quantity can be absolutely accurate when measured —
it is always subject to some degree of uncertainty. We will look at the
reasons for this in this section.

There are two types of error that contribute to our uncertainty about a
reading — systematic and random.

Systematic errors

As the name suggests, these types of errors are due to the system being
used to make the measurement. This may be due to faulty apparatus. For
example, a scale may be incorrectly calibrated either during manufacture
of the equipment, or because it has changed over a period of time.
Rulers warp and, as a result, the divisions are no longer symmetrical.

A timer can run slowly if its quartz crystal becomes damaged (not
because the battery voltage has fallen — when the timer simply stops).

Figure 1 Zero error on digital calliper.

When measuring distances from sealed radioactive sources or light-
dependent resistors (LDRs), it is hard to know where the source is
actually positioned or where the active surface of the LDR is.

The zero setting on apparatus can drift, due to usage, so that it no longer
reads zero when it should - this is called a zero error.

Figure 1 shows a digital calliper with the jaws closed. This should read
0.000 mm but there is a zero error and it reads 0.01 mm. This means that
all readings will be 0.01 mm bigger than they should be. The calliper can
be reset to zero or 0.01 mm could be subtracted from any readings made.

Often it is not possible to spot a systematic error and experimenters have
to accept the reading on their instruments, or else spend significant effort
in making sure that they are re-calibrated by checking the scale against a
standard scale. Repeating a reading never removes the systematic error.
The real problem with systematic errors is that it is only possible to check
them by performing the same task with another apparatus. If the two
sets give the same results, the likelihood is that they are both performing
well; however, if there is disagreement in the results a third set may be
needed to resolve any difference.

In general we deal with zero errors as well as we can and then move
on with our experimentation. When systematic errors are small, a
measurement is said to be accurate.
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@ Nature of science
Systematic errors

Uncertainty when using a 300 mm ruler may be
quoted to £0.5 mm or £1 mm depending on your
view of how precisely you can gauge the reading.
To be on the safe side you might wish to use the
larger uncertainty and then you will be sure that
the reading lies within your bounds.

i

A Figure 2 Millimeter (mm]) scale on ruler.

You should make sure you observe the scale from
directly above and at right angles to the plane of
the ruler in order to avoid parallax errors.

S
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A Figure 3 Parallax error.

Random errors

The meter in figure 4 shows an analogue ammeter
with a fairly large scale — there is justification in
giving this reading as being (40 £ 5) A.

A Figure 4 Analogue scale.

A Figure5 Digital scale.

The digital ammeter in figure 5 gives a value
of 0.27 A which should be recorded as
(0.27 £ 0.01) A.

In each of these examples the uncertainty is
quoted to the same precision (number of
decimal places) as the reading — it is essential

to do this as the number of decimal places is
always indicative of precision. When we write an
energy value as being 8 J we are implying that it
is (8 £ 1) J and if we write it as 8.0 J it implies a
precision of +0.1 J.

Random errors can occur in any measurement, but crop up most
frequently when the experimenter has to estimate the last significant
figure when reading a scale. If an instrument is insensitive then it may
be difficult to judge whether a reading would have changed in different
circumstances. For a single reading the uncertainty could well be better
than the smallest scale division available. But, since you are determining
the maximum possible range of values, it is a sensible precaution to

use this larger precision. Dealing with digital scales is a problem — the
likelihood is that you have really no idea how precisely the scales are
calibrated. Choosing the least significant digit on the scale may severely
underestimate the uncertainty but, unless you know the manufacturer’s
data regarding calibration, it is probably the best you can do.

When measuring a time manually it is inappropriate to use the precision
of the timer as the uncertainty in a reading, since your reaction time

is likely to be far greater than this. For example, if you timed twenty
oscillations of a pendulum to take 16.27 s this should be recorded as
being (16.3 £ 0.1) s. This is because your reaction time dominates the
precision of the timer. If you know that your reaction time is greater
than 0.1 s then you should quote that value instead of 0.1 s.
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The best way of handling random errors is to take a series of repeat
readings and find the average of each set of data. Half the range of the
values will give a value that is a good approximation to the statistical
value that more advanced error analysis provides. The range is the

largest value minus the smallest value.

Readings with small random errors are said to be precise (this

does not mean they are accurate, however).

Worked examples

1 In measuring the angle of refraction at an air-
glass interface for a constant angle of incidence
the following results were obtained (using a
protractor with a precision of + 1°):

45°, 47°, 46°, 45°, 44°

How should we express the angle of
refraction?

Solution

The mean of these values is 45.4° and the range is
(47° — 44°) = 3°.

Half the range is 1.5°.

How then do we record our overall value for
the angle of refraction?

Since the precision of the protractor is £1°,

we should quote our mean to a whole number
(integral) value and it will round down to

45°. We should not minimize our uncertainty
unrealistically and so we should round this up
to 2°. This means that the angle of refraction
should be recorded as 45 + 2°.

2 The diagram below shows the position of the
meniscus of the mercury in a mercury-in-glass
thermometer.

7t 0 1 2 3 4 5 6 7 8 9 10

Express the temperature and its uncertainty to
an appropriate number of significant figures.

Solution

The scale is calibrated in degrees but they are
quite clear here, so it is reasonable to expect

a precision of +0.5 °C. The meniscus is closer

to 6 than to 6.5 (although that is a judgement
decision) so the values should be recorded as
(6.0 £ 0.5) °C. Remember the measurement and
the uncertainty should be to the same number of
decimal places.

3 A student takes a series of measurements
of a certain quantity. He then averages his
measurements. What aspects of systematic
and random uncertainties is he addressing by
taking repeats and averages?

Solution

Systematic errors are not dealt with by means of
repeat readings, but taking repeat readings and
averaging them should cause the average value
to be closer to the true value than a randomly
chosen individual measurement.

Absolute and fractional uncertainties

The values of uncertainties that we have been looking at are
called absolute uncertainties. These values have the same units
as the quantity and should be written to the same number of
decimal places.

Dividing the uncertainty by the value itself leaves a dimensionless quantity
(one with no units) and gives us the fractional uncertainty. Percentaging
the fractional uncertainty gives the percentage uncertainty.

11
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Worked example

Calculate the absolute, fractional, and percentage  range = (2.8 — 2.5) N = 0.3 N, giving an
uncertainties for the following measurements of a  absolute uncertainty of 0.15 N that rounds

force, F:

25N,28N,2.6N

Solution
25N+ 28N+ 2.6N

mean value = -
rounded down to 2.6 N

14 €7 14 11

e e

27 91 ST

8T

67

n
o

Figure 6 Measuring a length.

up to 0.2 N
We would write our value for Fas (2.6 + 0.2) N

the fractional uncertainty is % = 0.077 and the

percentage uncertainty will be 0.077 x 100% =
= 2.63 N, this is 7.7%

Propagation of uncertainties

Often we measure quantities and then use our measurements to
calculate other quantities with an equation. The uncertainty in

the calculated value will be determined from a combination of the
uncertainties in the quantities that we have used to calculate the value
from. This is known as propagation of uncertainties.

There are some simple rules that we can apply when we are propagating
uncertainties. In more advanced treatment of this topic we would
demonstrate how these rules are developed, but we are going to focus
on your application of these rules here (since you will never be asked to
prove them and you can look them up in a text book or on the Internet
if you want further information).

In the uncertainty equations discussed next, a, b, ¢, etc. are the quantities
and Aa, Ab, Ac, etc. are the absolute uncertainties in these quantities.
Addition and subtraction

This is the easiest of the rules because when we add or subtract
quantities we always add their absolute uncertainties.

Whena=5b+¢ ora=b—c¢ then Aa = Ab + Ac

In order to use these relationships don’t forget that the quantities being
added or subtracted must have the same units.
So if we are combining two masses m, and m, then the total mass m will
be the sum of the other two masses.
m, = (200 £ 10) g and m, = (100 £ 10) gso m =300 gand Am =20 g
meaning we should write this as:

m= (300 £ 20)¢g

We use subtraction more often than we realise when we are measuring
lengths. When we set the zero of our ruler against one end of an object
we are making a judgement of where the zero is positioned and this really
means that the value is (0.0 + 0.5) mm.

A ruler is used to measure a metal rod as shown in figure 6. The length
is found by subtracting the smaller measurement from the larger one.
The uncertainty for each measurement is 0.5 mm.

Larger measurement = 195.0 mm
Smaller measurement = 118.5 mm

Length = (76.5 £ 1.0) mm as the uncertainty is 0.5 mm + 0.5 mm



@ Nature of science

Subtracting values

When subtraction is involved in a relationship

you need to be particularly careful. The resulting
quantity becomes smaller in size (because of
subtraction), while the absolute uncertainty becomes
larger (because of addition). Imagine two values that
are subtracted: » = 4.0 = 0.1 and ¢ =3.0 £ 0.1.

1.2 UNCERTAINTIES AND ERRORS

If a=b— cthen a = 1.0 and since Aa = Ab + Ac
then Aa = 0.2

We have gone from two values in which the
percentage uncertainty is 2.5% and 3.3%
respectively to a calculated value with uncertainty
of 20%. Now that really is propagation of

We won't concern ourselves with what these uncertainties!
quantities actually are here.

Multiplication and division
When we multiply or divide quantities we add their fractional or
percentage uncertainties, so:

b c

whena =bcora=7zora=y

Aa Ab Ac
then = = + =
There are very few relationships in physics that do not include some

form of multiplication or division.

We have seen that density p is given by the expression p = % where

m is the mass of a sample of the substance and V is its volume. For a
particular sample, the percentage uncertainty in the mass is 5% and for
the volume is 12%.

The percentage uncertainty in the calculated value of the density will
therefore be £17%.

If the sample had been cubical in shape and the uncertainty in each
of the sides was 4% we can see how this brings about a volume with
uncertainty of 12%:

For a cube the volume is the cube of the side length (V=1>=1x [ x )
so &Y =&AL ALy A= 4% + 4% + 4% = 12%

This example leads us to:

Raising a quantity to a power
From the cube example you might have spotted that % = 3%

This result can be generalized so that when a = " (where n can be a
positive or negative whole, integral, or decimal number)

Aa __ Ab
then =z = |7’ZT

The modulus sign is included as an alternative way of telling us that the
uncertainty can be either positive or negative.

13
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Worked example

The period T of oscillation of a mass m on a spring,
having spring constant k is T = Zw\/ -

Don't worry about what these quantities actually mean
at this stage.

The uncertainty in & is 11% and the uncertainty in
mis 5%.

Calculate the approximate uncertainty in a value
for T of 1.20 s.

Solution
First let’s adjust the equation a little — we can
write it as

T= 277(%)% which is of the form a = 2#(%)
Although we will truncate «, we can really write it
to as many significant figures as we wish and so the

Using the division and power relationships:

%:n%—f—n%orhere%:%%ﬂ—m—&—%%
so the percentage uncertainty in 7 will be half that
in m + half that in k.

This means that the percentage error in
T=0.5x5%+0.5x 11% = 8%

If the measured value of Tis 1.20 s then the
absolute uncertainty is 1.20 x % = 0.096 This
rounds up to 0.10 and so we quote T as being

(1.20 £ 0.10) s.

Remember that the quantity and the uncertainty
must be to the same number of decimal places
and so the zeros are important, as they give us the
precision in the value.

percentage uncertainty in , as in 2 will be zero.

3.0 5
T
)
e 2.0
3
3 |—f—|
0

1.0

0 T T 1

1
0 0.1 0.2 0.3 04
time/s

Figure 7 Error bars.

The value could lie
anywhere inside this
rectangle

3.0

—1

2.0

speed/ms

1.0

0 I I I I
0 0.1 02 03 04

time/s
Figure 8 Zone of uncertainty.
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Drawing graphs

An important justification for experimental work is to investigate the
relationship between physical quantities. One set of values is rarely very
revealing even if it can be used to calculate a physical constant, such as
dividing the potential difference across a resistor by the current in the
resistor to find the resistance. Although the calculation does tell you the
resistance for one value of current, it says nothing about whether the
resistance depends upon the current. Taking a series of values would tell
you if the resistance was constant but, with the expected random errors,
it would still not be definitive. By plotting a graph and drawing the line
of best fit the pattern of results is far easier to spot, whether it is linear or
some other relationship.

Error bars

In plotting a point on a graph, uncertainties are recognized by adding
error bars. These are vertical and horizontal lines that indicate the
possible range of the quantity being measured. Suppose at a time of

(0.2 + 0.05) s the speed of an object was (1.2 £ 0.2) m s~! this would be
plotted as shown in figure 7.

This means that the value could possibly be within the rectangle that
touches the ends of the error bars as shown in figure 8. This is the zone
of uncertainty for the data point. A line of best fit should be one that
spreads the points so that they are evenly distributed on both sides of the
line and also passes through the error bars.

Uncertainties with gradients

Using a computer application, such as a spreadsheet, can allow you to
plot a graph with data points and error bars. You can then read off the
gradient and the intercepts from a linear graph directly. The application



1.2 UNCERTAINTIES AND ERRORS

will automatically draw the best trend line. You can then add the trend
lines with the steepest and shallowest gradients that are just possible —
while still passing through all the error bars. Students quite commonly,
but incorrectly, use the extremes of the error bars that are furthest apart
on the graphs. Although these could be appropriate, it is essential that all
the trend lines you draw pass through all of the error bars.

In an experiment to measure the electromotive force (emf) and internal
resistance of a cell, a series of resistors are connected across the cell. The
currents in and potential differences across the resistors are then measured.
A graph of potential difference, V, against current, I, should give a straight
line of negative gradient. As you will see in Topic 5 the emf of a cell is
related to the internal resistance r by the equation:

e=IR+1r=V+1Ir
This can be rearranged to give V=¢ — Ir

So a graph of V against I is of gradient —r (the internal resistance) and
intercept € (the emf of the cell).

The table on the right shows a set of results from this experiment. With
a milliammeter and voltmeter of low precision the repeat values are
identical to the measurements given in the table.

The graph of figure 9 shows the line of best fit together with two lines
that are just possible.

EMF and Internal Resistance
1.8 5

I+ 5/mA
1.6 1 V=—0.013/+ 1.68 15
4 [ | V=—-0.0127/+ 1.64
il T3 V= —0.0153/+ 1.78 20
AN
1.2 = 25
1.0 - ! ! { 1 ! 30
VN
0.8 35
0.6 1 i 50
0.4 55
0.2 i i /0
0.0 T T T T T T 1 85
0 20 40 60 80 100 120 140 90

1/mA
Figure 9 A graph of potential difference, V, against current, /, for a cell.

Converting from milliamps to amps, the equations of these lines suggest that
the internal resistance (the gradient) is 13.0 2 and the range is from 12.7
to 15.3 © (= 2.6 2) meaning that half the range = 1.3 €.

This leads to a value for r = (13.0 £ 1.3) .

The intercept on the V axis of the line of best fit = 1.68 which rounds
to 1.7 V (since the data is essentially to 2 significant figures). The range
of the just possible lines gives 1.6 to 1.8 V (when rounded to two
significant figures). This means that e = (1.6 = 0.1) V.

v+ 0.4V

1.5
1.4
1.4
1.3
1.2
11
09
0.8
0.6
0.5
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MEASUREMENTS AND UNCERTAINTIES

@ Nature of science

Drawing graphs manually

e One of the skills expected of physicists is to
draw graphs by hand and you may well be

tested on this in the data analysis question in
Paper 3 of the IB Diploma Programme physics

examination. You are also likely to need to
draw graphs for your internal assessment.

e Try to look at your extreme values so that you

have an idea of what scales to use. You will
need a minimum of six points to give you a
reasonable chance of drawing a valid line.

e Use scales that will allow you to spread your
points out as much as possible (you should

fill your page, but not overspill onto a second
sheet as that would damage your line quality
and lose you marks). You can always calculate
an intercept if you need one; when you don't

include the origin, your axes give you a false
origin (which is fine).

Use sensible scales that will make both plotting
and your calculations clear-cut (avoid scales that
are multiples of 3, 4, or 7 — stick to 2, 5, and 10).

Try to plot your graph as you are doing the
experiment — if apparently unusual values
crop up, you will see them and can check that
they are correct.

Before you draw your line of best fit, you need
to consider whether or not it is straight or a
curve. There may well be anomalous points
(outliers) that you can ignore, but if there is

a definite trend to the curve then you should
opt for a smooth curve drawn with a single
line and not “sketched” artistically!

Figure 10 shows some of the key elements of a good hand-drawn graph. Calculating the gradients on

the graph is very useful when checking values.

best straight line —;

1
gradient of best straight line
e (59.6 — 42.0) x 1076 m?3
i (398 — 288) K
= LR E = e
56
gradient of just possible line
” (58.6 —42.0) x 1075 m3
i (398 — 286) K
= 1148 X 107" m3 KT?
52
E
w
I 50
o
-~
=
All values on V axis 48
have been divided by
10=8and are in m3
46
outlier ignored
44 A for best
straight line
False origin — neither v
line has been forced e ietiielinstnintd bEeniabiiaiin
through this point
40

line that is just possible

Second “just possible”
line should be added
for a real investigation —
it has been missed out
here so that you can
clearly see the values
on the two lines

Use a large gradient
triangle to reduce
uncertainties

Uncertainties in
temperature are too
small to draw error bars

- I I I
260 280 300 320

A Figure 10 Hand-drawn graph.

I I I
360 380 400



1.2 UNCERTAINTIES AND ERRORS

Linearizing graphs

Many relationships between physical quantities are not directly
proportional and a straight line cannot be obtained simply by plotting
one quantity against the other. There are two approaches to dealing
with non-proportional relationships: when we know the form of the
relationship and when we do not.

If we do know the form of the relationship such as p « iv (for a gas held
at constant temperature) or T o< v// (for a simple pendulum) we can plot
a graph of one quantity against the power of the other quantity to obtain
a straight-line origin graph. An alternative for the simple pendulum is to
plot a graph of 77 against / which will give the same result.

You should think about the propagation of errors when you
consider the relative merits of plotting T against v// or T? against /.

The following discussion applies to HL examinations, but offers such a useful
technique that SL students may wish to utilize it when completing IAs or if they
undertake an Extended Essay in a science subject.

If we don’t know the actual power involved in a relationship, but we
suspect that one quantity is related to the other, we can write a general
relationship in the form y = kx” where k and 7 are constants.

By taking logs of this equation we obtain log y = log k + nlog x which we
can arrange into log y = nlog x + log k and is of the form y = mx + c. This
means that a graph of log y against log x will be linear of gradient » and
have an intercept on the log y axis of log k.

This technique is very useful in carrying out investigations when a
relationship between two quantities really is not known. The technique
is also a useful way of dealing with exponential relationships by taking
logs to base e, instead of base 10. For example, radioactive nuclides
decay so that either the activity or the number of nuclei remaining falls
according to the same general form. Writing the decay equation for the
number of nuclei remaining gives:

N = N,e by taking logs to the base e we get InN = InN — At (where
InN is the usual way of writing log N).

By plotting a graph of InN against ¢ the gradient will be —\¢ and the
intercept on the InN axis will be InN,. This linearizes the graph shown
in figure 11 producing the graph of figure 12. A linear graph is easier to
analyse than a curve.

Capacitors also discharge through resistors using the same general
mathematical relationship as that used for radioactive decay.

7

_ G e

Relationships can never be
“indirectly proportional” — this
is a meaningless term since it
is too vague. Consequently the
term “proportional” means the
same as “directly proportional”.

This topic is dealt with in more
detail and with many further
examples on the website.

expontential shape

30 4 N = 32e 0.039t

N/arbitrary units

I
0 20 40 60 80 100
t/arbitrary units
Figure 11

linear form of same data

InN = —0.0385t + 3.4657

InN

I I 1 I 1 I | I 1 1
0 10 20 30 40 50 60 7?0 80 90 100
t/arbitrary units
Figure 12
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1.3 Vectors and scalars

Understanding @ Applications and skills

= Vectorand scalar quantities = Solving vector problems graphically and

- Combination and resolution of vectors algebraically.

Equations

The horizontal and vertical components of vector A:
> A =Acos0

> A,=Asinf

Ay

A
1
1
I
1
1
1
]
|
1

@ Nature of science

All physical quantities that you will meet on the Philosophiae Naturalis Principia Mathematica,
course are classified as being vectors or scalars. published in 1687, Newton used quantities which
Itis important to know whether any quantity is we now call vectors, but never generalized this to
a vector or a scalar since this will affect how the deal with the concepts of vectors. At the start of
quantity is treated mathematically. Although the 19th century vectors became an indispensible
the concept of adding forces is an intuitive tool for representing three-dimensional space
application of vectors that has probably been and complex numbers. Vectors are now used

used by sailors for millennia, the analytical as a matter of course by physicists and

aspect of itis a recent development. In the mathematicians alike.

Vector and scalar quantities

Scalar quantities are those that have magnitude (or size) but no
direction. We treat scalar quantities as numbers (albeit with units) and
use the rules of algebra when dealing with them. Distance and time are
both scalars, as is speed. The average speed is simply the distance divided
by the time, so if you travel 80 m in 10s the speed will always be 8 ms~'.
There are no surprises.

Vector quantities are those which have both magnitude and direction.
We must use vector algebra when dealing with vectors since we

must take into account direction. The vector equivalent of distance is
called displacement (i.e., it is a distance in a specified direction). The
vector equivalent of speed is velocity (i.e., it is the speed in a specified
direction). Time, as we have seen, is a scalar. Average velocity is defined
as being displacement divided by time.




Dividing a vector by a scalar is the easiest operation that we need to

do involving a vector. To continue with the example that we looked at
with scalars, suppose the displacement was 80 m due north and the time
was, again, 10s. The average velocity would be 8 ms ' due north. So, to
generalize, when we divide a vector by a scalar we end up with a new
vector that has the direction of the original one, but which will be of
magnitude equal to that of the vector divided by that of the scalar.

Commonly used vectors and scalars

Vectors Scalars Comments
force (F) mass (m) F
displacement (s) length/distance (s, d, etc.] | displacement used to be called “space” — now that
means something else!
velocity (v oru]) time (t)
momentum (p] volume (V)
acceleration (a) temperature (T)
gravitational field strength (g) | speed (voru]) velocity and speed often have the same symbol
electric field strength (E) density (p) the symbol for density is the Greek “rho” not the letter “p”
magnetic field strength (B) pressure (p)
area (A) energy/work (W, etc.) the direction of an area is taken as being at right angles to
the surface
power (P)
current (/) with current having direction you might think that it

should be a vector butitis not (it is the ratio of two
scalars, charge and time, so it cannot be a vector]. In
more advanced work you might come across current
density which is a vector.

resistance (R)

gravitational potential (V) . o o .

) - the subscripts tell us whether itis gravitational or electrical
electric potential (V]

magnetic flux (P) flux is often thought as having a direction — it doesn’t!

Representing vector quantities

A vector quantity is represented by a line with an arrow.
e The direction the arrow points represents the direction of the vector.

e The length of the line represents the magnitude of the vector to a
chosen scale.

When we are dealing with vectors that act in one dimension it is a
simple matter to assign one direction as being positive and the opposite
direction as being negative. Which direction is positive and which
negative really doesn’t matter as long as you are consistent. So, if one
force acts upwards on an object and another force acts downwards, it is a
simple matter to find the resultant by subtracting one from the other. Figure 1 Representing a vector.

5.0N
this vector can represent a force

of 5.0 N'in the given direction
(using a scale of 1 cm representing
1N, it will be 5 cm long)
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Figure 2 shows an upward tension and downward weight acting on an
tension — 20 N upwards ob!ect - the l}pwar('i .hn.e is longer than the downward line since the
object is not in equilibrium and has an upward resultant.

Adding and subtracting vectors

When adding and subtracting vectors, account has to be taken of their
direction. This can be done either by a scale drawing (graphically) or

algebraically.

resultant =5 N upwards

¢ weight = 15 N downwards

Figure 2 Two vectors acting on an object.

Figure 4 Adding the vectors.

Figure 3 Two vectors to be added.

Scale drawing (graphical) approach
Adding two vectors V, and V, which are not in the same direction can be

done by forming a parallelogram to scale.
Make a rough sketch of how the vectors are going to add together to

[ )
give you an idea of how large your scale needs to be in order to fill
the space available to you. This is a good idea when you are adding
the vectors mathematically too.

e Having chosen a suitable scale, draw the scaled lines in the
direction of V, and V, (so that they form two adjacent sides of the
parallelogram).

e Complete the parallelogram by drawing in the remaining two sides.

e The blue diagonal represents the resultant vector in both

magnitude and direction.

Worked example
Two forces of magnitude 4.0 N and 6.0 N act on a
single point. The forces make an angle of 60° with

Scale 10 mm represents 1.0 N

each other. Using a scale diagram, determine the
80 90 10
resultant force. o S w0 L
< Q.ﬁ%

. o i

Solution - e
DU,
S

Don’t forget that the vector must have a

magnitude and a direction; this means that the

angle is just as important as the size of the force. .
4N

length of resultant = 87 mm so the force = 8.7 N
angle resultant makes with 4 N force = 36°

20
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Algebraic approach

Vectors can act at any angle to each other but the most common
situation that you are going to deal with is when they are at right angles
to each other. We will deal with this first.

V2 E
Adding vector quantities at right angles
Pythagoras’ theorem can be used to calculate a resultant vector when
two perpendicular vectors are added (or subtracted). Assuming that the >
two vector quantities are horizontal and vertical but the principle is the Vi

same as long as they are perpendicular.

Figure 5 shows two perpendicular velocities v and v,; they form a
parallelogram that is a rectangle.

The magnitude of the resultant velocity = \/v: + v3

e The resultant velocity makes an angle 6 to the horizontal given by

M3

Y,

tan 0 =
VZ

v
so that § = tan ! (1)

e Notice that the order of adding the two vectors makes no difference
to the length or the direction of the resultant. Figure 5 Adding two perpendicular vectors.

Worked example sketch

A walker walks 4.0 km due west from his starting
point. He then stops before walking 3.0 km due
north. At the end of his journey, how far is the

walker from his starting point? .
m

Solution
resultant = V4> + 3° = 5 km

angle § = tan™! (%) = 36.9°

Before we look at adding vectors that are not perpendicular, we need to
see how to resolve a vector —i.e. split it into two components.

Resolving vectors
We have seen that adding two vectors together produces a resultant

vector. It is sensible, therefore, to imagine that we could split the Fein0 1 i
resultant into the two vectors from which it was formed. In fact this is

true for any vector — it can be divided into components which, added

together, make the resultant vector. There is no limit to the number 0

of vectors that can be added together and, consequently, there is no Feosd

limit to the number of components that a vector can be divided into. Figure 6 Resolving a force.
However, we most commonly divide a vector into two components

that are perpendicular to one another. The reason for doing this is that

perpendicular vectors have no affect on each other as we will see when

we look at projectiles in Topic 2.

The force F in figure 6 has been resolved into the horizontal component
equal to F cosf and a vertical component equal to Fsiné. (The
component opposite to the angle used is always the sine component.)

21
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Worked example

An ice-hockey puck is struck at a constant speed
of 40 m s ! at an angle of 60° to the longer side of
an ice rink. How far will the puck have travelled
in directions a) parallel and b) perpendicular to
the long side after 0.5 s?

Solution
i
—uf i
ioo 40 ms :
- 1
'z i
4 '
I :
= :
1
1
1
60° i

long side of rink

a) Resolving parallel to longer side:

v = vcos 60°

v =40 cos 60°=20m s

distance travelled (x) = vt =20 x 0.5
=10m

b) Resolving parallel to shorter side:
v = vsin 60°
v, =40 cos 60° = 34.6 m s

distance travelled (y) = vi=34.6x0.5
=17m

Just to demonstrate that resolving is the reverse
of adding the components we can use Pythagoras’
theorem to add together our two components
giving:

total speed = +/20% + 34.6° = 39.96 ms !

as the value for v, was rounded this gives the
expected 40 m s!

Adding vector quantities that are not at right angles

You are now in a position to add any vectors.

e Resolve each of the vectors in two directions at right angles — this
< will often be horizontally and vertically, but may be parallel and
< perpendicular to a surface.
" —
! i 7 e Add all the components in one direction to give a single component.
=1
<' e Add all the components in the perpendicular direction to give a
0 second single component.
1
%

I
I
1
1
|
I
1
!
|
~
I
I
I
I
I
]
]
]
|
L

Figure 7 Finding the resultant
of two vectors that are not
perpendicular.

e Combine the two components using Pythagoras’ theorem, as for two
vector quantities at right angles.

V, and V, are the vectors to be added.

Each vector is resolved into components in the x and y directions.

Note that since the x component of V, is to the left it is treated as being
negative (the y component of each vector is in the same direction...so
upwards is treated as positive).

Total x component V. =V, +V, =V, cos 0 — V,cos 0,
Total y component V, =V, +V, = V,sin 0, + V,sin 0,

Having calculated V, and V, we can find the resultant by using

Pythagoras so V=1/V: + V;

and the angle § made with the horizontal = tan™' (L

y

v |

x



Worked example

Magnetic fields have strength 200 mT and 150 mT
respectively. The fields act at 27° to one another as

shown in the diagram.

200 ml (not drawn

to scale)

27°

a5

150 mT

Calculate the resultant magnetic field strength.

Subtraction of vectors

1.3 VECTORS AND SCALARS

Solution

The 150 mT field is horizontal and so has no
vertical component.

Vertical component of the 200 mT field =
200 sin 27° = 90.8 mT

This makes the total vertical component of the
resultant field.

Horizontal component of the 200 mT field =
200 cos 27° = 178.2 mT

Total horizontal component of resultant field =
(150.0 4+ 178.2) mT = 328.2 mT

7

o
\ 3

Resultant field strength v/90.8% + 328.2? = 340 mT

The resultant field makes an angle of:

tan-! (3920582) = 15° with the150 mT field.

Subtracting one vector from another is very simple — you just form the
negative of the vector to be subtracted and add this to the other vector.
The negative of a vector has the same magnitude but the opposite
direction. Let’s look at an example to see how this works:

Suppose we wish to find the difference between two velocities v, and v,

shown in figure 8.

Figure 8 Positive and negative vectors.

In finding the difference between two values we subtract the first value
from the second; so we need —v,. We then add —Vv, to v, as shown in

figure 9 to give the red resultant.

The order of combining the two vectors doesn’t matter as can be seen
from the two versions in figure 9. In each case the resultant is the same —
it doesn’t matter where the resultant is positioned as long as it has the

same length and direction it is the same vector.

V2

Figure 9 Subtracting vectors.
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Questions

1 Express the following units in terms of the SI 5 Write down the order of magnitude of the

fundamental units.

a) newton (N)
b) watt (W)
c) pascal (Pa)
d) coulomb (C)
e) volt (V)
(5 marks)

Express the following numbers to three
significant figures.
a) 257.52
b) 0.002 347
c) 0.1783
d) 7873
e) 1.997
(5 marks)

Complete the following calculations and
express your answers to the most appropriate
number of significant figures.

a) 1.34 x 3.2

2
b) 1.34 X 10
2.1 x 10°

c) 1.87 x 10>+ 1.97 x 10°
d) (1.97 x 10%) x (1.0 x 10%
e) (9.47 x 102) x (4.0 x 10°)

(5 marks)

Use the appropriate metric multiplier instead of
a power of ten in the following.
a) 1.1 x10*V
b) 4.22 x 10 “m
c) 8.5 x 10"°W
d) 422 x107m
e) 3.5x 10 C
(5 marks)

following (you may need to do some research).

a) the length of a human foot
b) the mass of a fly

c) the charge on a proton

d) the age of the universe

e) the speed of electromagnetic waves in a
vacuum

(5 marks)

a) Without using a calculator estimate to one
2714.9

480 °

b) When a wire is stretched, the area
under the line of a graph of force against
extension of the wire gives the elastic
potential energy stored in the wire.
Estimate the energy stored in the wire with
the following characteristic:

significant figure the value of

2]

10

force/N

extension/mm

(4 marks)

The grid below shows one data point and its
associated error bar on a graph. The x-axis is
not shown. State the y-value of the data point
together with its absolute and percentage
uncertainty.

5079

4.0 7

ol ]

2.0

1.0
(3 marks)



QUESTIONS

8

10

A ball falls freely from rest with an acceleration g.
The variation with time ¢ of its displacement s
is given by s = % gt*. The percentage uncertainty
in the value of ¢is £3% and that in the value of
g is £2%. Calculate the percentage uncertainty
in the value of s.

(2 marks)

The volume V of a cylinder of height /# and
radius r is given by the expression V = nr?h. In
a particular experiment, 7 is to be determined
from measurements of V and /. The percentage
uncertainty in Vis £5% and that in / is £2%.
Calculate the percentage uncertainty in r.

(3 marks)

(IB)

At high pressures, a real gas does not behave

as an ideal gas. For a certain range of pressures,

it is suggested that for one mole of a real gas at
constant temperature the relation between the
pressure p and volume V'is given by the equation

pV=A+ Bp where A and B are constants.

In an experiment, 1 mole of nitrogen gas

was compressed at a constant temperature of
150 K. The volume V of the gas was measured
for different values of the pressure p. A graph
of the product pV against p is shown in the
diagram below.

13
L]
L]
12
pV/10°Nm s
L]
11 o
L ]
10 T T T T
0 5 10 15 20
p/ % 105Pa

a) Copy the graph and draw a line of best fit
for the data points.

b) Use your graph to determine the values of
the constants A and B in the equation
pV=A+ Bp

¢) p was measured to an accuracy of 5% and
V was measured to an accuracy of 2%.
Determine the absolute error in the value
of the constant A.

(6 marks)

11 (IB)

An experiment was carried out to measure the
extension x of a thread of a spider’s web when
a load Fis applied to it.

9.0 -
8.0 4
7.0 4
6.0 -
F/10—2N 5.0 -
4.0 4 .
3.0
2.0 4
1.0 -
0.0 4—av’—y ' , . '
0.0 10 20 3.0 40 50 6.0
x/10—2m

«—thread breaks
at this point

a) Copy the graph and draw a best-fit line for
the data points.

b) The relationship between F and x is of the
form

F = kx"

State and explain the graph you would plot
in order to determine the value 7.

c¢) When a load is applied to a material, it is

said to be under stress. The magnitude p of
the stress is given by

F

P=7
where A is the cross-sectional area of the
sample of the material.

Use the graph and the data below to deduce
that the thread used in the experiment has
a greater breaking stress than steel.

Breaking stress of steel = 1.0 x 10° N m 2
Radius of spider web thread = 4.5 x 10 °m

d) The uncertainty in the measurement of
the radius of the thread is £0.1 x 10 ° m.
Determine the percentage uncertainty in
the value of the area of the thread.

(9 marks)
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MEASUREMENTS AND UNCERTAINTIES

12 A cyclist travels a distance of 1200 m due
north before going 2000 m due east followed
by 500 m south-west. Draw a scale diagram to
calculate the cyclist’s final displacement from
her initial position.

(4 marks)

13 The diagram shows three forces P, Q, and R in
equilibrium. P acts horizontally and Q vertically.

W

When P = 5.0N and Q = 3.0N, calculate the
magnitude and direction of R.

(3 marks)

14 A boat, starting on one bank of a river, heads
due south with a speed of 1.5 m s !. The river
flows due east at 0.8 m s,

a) Calculate the resultant velocity of the boat
relative to the bank of the river.

b) The river is 50 m wide. Calculate the
displacement from its initial position when
the boat reaches the opposite bank.

(7 marks)

15 A car of mass 850 kg rests on a slope at 25°
to the horizontal. Calculate the magnitude of
the component of the car’s weight which acts
parallel to the slope.

(3 marks)



END-OF-TOPIC QUESTIONS

Solutions for Topic 1 — Measurements and uncertainties

1. a) kgms? d) As
b) kgm?3s? e) kgm?s'A!
c) kgm's?
2. a) 258 d) 7870
b) 0.00235 e) 2.00
c) 0.178
3. a) 4.3 d) 2.0 x 10°
b) 6.4 x 10?2 e) 3.8 x 10?
c) 2.16 x 10°
4. a) 11kv d) 0.422 pm or 422 nm
b) 0.422 mm or 422 pm e) 0.35pC or 350 fC
c) 85GW

5. a) 10'm (a few 10s of cm)
b) 10*-10 2 kg (flies come in many different shapes and sizes!)
¢) 10 C (1.6 x 10C)
d) 10' year (13.7 billion years)
e) 10°ms' (3.0 x 108ms')

2X3x5 6
500 ~ 100

b) between 70 and 74 mJ
7. 3.0 £ 0.4; £13.3% (or rounding up +14%)

As  Ag At

6. a) =0.06

8. SF=—+25 =002+ (2x0.03) =008 =+8%
Ar_1(Ah AV _ — 440
9. = 2(h - V)_0.5><0.02x0.05_0.035_14/o

10. a) check line of best fit reasonable

b) A = y-intercept; B = gradient

c) use difference between steepest and shallowest gradients
11.a) check line of best fit reasonable

b) log F = n log x + log k; plot log F against log x and find gradient of graph which is »

-2
Q p=—232x10" 135, 10°Nm?
X 4.5x10°
-6
d)&_2£_2xuzo,o4:i4%

45 x10°
12. (1850 £ 50) m at angle of N (60 £ 5) °E from scale starting point
13. magnitude = /5> + 3> = 5.8 N

tan 6 = 2; 6 = 31° to horizontal

3
14. a) magnitude of velocity = v 1.5+ 0.8° = 1.7m s’
tan 6 = (1) 2 6 = 28° with original direction

b) s cos 28 = 50; displacement s = 57 m
15. component parallel to slope = myg sin § = 850 x 9.8 sin 25 = 3500 N
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Il MEASUREMENT AND UNCERTAINTIES

The realm of physics — range of magnitudes of
quantities in our universe

ORDERS OF MAGNITUDE —
INCLUDING THEIR RATIOS

Physics seeks to explain nothing less than the
Universe itself. In attempting to do this, the
range of the magnitudes of various quantities
will be huge.

If the numbers involved are going to mean
anything, it is important to get some feel

for their relative sizes. To avoid ‘getting lost’
among the numbers it is helpful to state them
to the nearest order of magnitude or power
of ten. The numbers are just rounded up or
down as appropriate.

Comparisons can then be easily made because
working out the ratio between two powers of
ten is just a matter of adding or subtracting
whole numbers. The diameter of an atom,
10" m, does not sound that much larger
than the diameter of a proton in its nucleus,
10 ' m, but the ratio between them is 10° or
100,000 times bigger. This is the same ratio as
between the size of a railway station (order
of magnitude 10> m) and the diameter of the
Earth (order of magnitude 107 m).

electrons

protons

Carbon atom

Earth

For example, you would probably feel very
pleased with yourself if you designed a new,
environmentally friendly source of energy
that could produce 2.03 x 10?J from 0.72 kg
of natural produce. But the meaning of these
numbers is not clear — is this a lot or is it a
little? In terms of orders of magnitudes, this
new source produces 10° joules per kilogram
of produce. This does not compare terribly
well with the 10° joules provided by a slice of
bread or the 108 joules released per kilogram
of petrol.

You do NOT need to memorize all of the
values shown in the tables, but you should
try and develop a familiarity with them.

RANGE OF MASSES

Mass / kg

1052 1 total mass of observable
1048 _| Universe

1044
104 mass of local galaxy
L0% 7| (Milky Way)

1032 -

1028 | mass of Sun

1024 mass of Earth

1020 total mass of oceans
total mass of atmosphere

1016

1012 4

108 . laden oil supertanker
104 | elephant

100 human

10-4 mouse

10-8 | grainof sand

RANGE OF LENGTHS

Size/m
10% radius of observable Universe
1024
1022
1020 radius of local galaxy (Milky Way)
1018
10t distance to nearest star
1014
1012
1010 distance from Earth to Sun
108 distance from Earth to Moon
106 radius of the Earth

deepest part of the
104  ocean/ highest mountain
102 - tallestbuilding

100 -
10-2 - length of fingernail
thickness of piece of paper

10-12 blood corpuscle 10"* ~ human blood corpuscle
i . 10-6 -
10-16| bacterium 10-¢ | wavelength of light
10204 . 10 _|
10-24 haemoglobin molecule 10 diameter of hydrogen atom
A 12
10-28 proton 10 wavelength of gamma ray
electron 10~ e c
10-32 10-16 lameter of proton
RANGE OF TIMES RANGE OF ENERGIES
Time/s
20 _]
10 age of the Universe YR Energy /Jl di
1018 _| 10 energy released in a supernova
1016 _| age of the Earth 10% -
1014 — age of species —Homo 20
1012 sapiens 10 = . .
7] energy radiated by Sunin 1 second
1010 _ 1026
108 typical human lifespan
= 1022 A
106 _ 1year energy released in an earthquake
104 1day 1018 -
] energy released by annihilation of
102 10 + 1 kg of matter
10° — heartbeat 1010 - energyina lightning discharge
2 =
18 , | period of high-frequency 108 - energy needed to charge a car
~| sound battery
107 10° kinetic energy of a tennis ball
108 — giii‘;ge of light across 10-2 | during game
1010 energy in the beat of a fly’s wing
10-12 107° 4
vibration of an ion in a solid
104 o 10-10 |
10-16 period of visible light
10-18 el
1020 _| passage of lightacross 1018 { energy needed to remove electron
10-22 anatom »s from the surface of a metal
1024 _| passage of lightacross 1075 4
anucleus 10-26
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The Sl system of fundamental and derived units

FUNDAMENTAL UNITS

Any measurement and every quantity can be thought of as
being made up of two important parts:

1. the number and
2. the units.
Without both parts, the measurement does not make sense.
For example a person’s age might be quoted as ‘seventeen’
but without the ‘years’ the situation is not clear. Are they
17 minutes, 17 months or 17 years old? In this case you would
know if you saw them, but a statement like

length = 4.2
actually says nothing. Having said this, it is really surprising to
see the number of candidates who forget to include the units in
their answers to examination questions.

In order for the units to be understood, they need to be defined.
There are many possible systems of measurement that have

been developed. In science we use the International System of
units (SI). In SI, the fundamental or base units are as follows

Quantity SI unit SI symbol
Mass kilogram kg

Length metre m

Time second S

Electric current ampere A

Amount of substance mole mol
Temperature kelvin K
(Luminous intensity candela cd)

You do not need to know the precise definitions of any of these
units in order to use them properly.

DERIVED UNITS

Having fixed the fundamental units, all other measurements
can be expressed as different combinations of the fundamental
units. In other words, all the other units are derived units. For
example, the fundamental list of units does not contain a unit
for the measurement of speed. The definition of speed can be
used to work out the derived unit.

distance

Since speed = —
time

units of distance

Units of speed = - -
units of time

metr ,
— netres (pronounced ‘metres per second’)
seconds

m

S
=ms'

Of the many ways of writing this unit, the last way (m s!) is the

best.

Sometimes particular combinations of fundamental units

are so common that they are given a new derived name. For
example, the unit of force is a derived unit - it turns out to be
kg m s~2. This unit is given a new name the newton (N) so that
IN=1kgms2

The great thing about SI is that, so long as the numbers that are
substituted into an equation are in SI units, then the answer
will also come out in SI units. You can always ‘play safe’ by
converting all the numbers into proper SI units. Sometimes,
however, this would be a waste of time.

There are some situations where the use of SI becomes
awkward. In astronomy, for example, the distances involved

are so large that the SI unit (the metre) always involves large
orders of magnitudes. In these cases, the use of a different

(but non SI) unit is very common. Astronomers can use the
astronomical unit (AU), the light-year (ly) or the parsec (pc)
as appropriate. Whatever the unit, the conversion to SI units is
simple arithmetic.

1AU=1.5 x 10" m

1ly=9.5x10"m

1 pc=3.1 x10"*m
There are also some units (for example the hour) which are so
common that they are often used even though they do not form
part of SI. Once again, before these numbers are substituted

into equations they need to be converted. Some common unit

conversions are given on page 3 of the IB data booklet.
The table below lists the SI derived units that you will meet.
Alternative SI unit

SI derived unit SI base unit

newton (N) kgm s

pascal (Pa) kgm's? Nm?
hertz (Hz) st —
joule (J) kg m?s? Nm
watt (W) kgm?s? Js!
coulomb (C) As —
volt (V) kgm?s> A! WA-!
ohm (Q2) kgm?s > A2 VA™!
weber (Wb) kgm?s ?A! Vs
tesla (T) kgs2 Al Wb m?
becquerel (Bq) s !

PREFIXES

To avoid the repeated use of scientific notation, an alternative is to use one of the list of agreed prefixes given on page 2 in the IB data
booklet. These can be very useful but they can also lead to errors in calculations. It is very easy to forget to include the conversion factor.

For example, 1 kW = 1000 W. 1 mW = 10> W (in other words, %)

2 MEASUREMENT AND UNCERTAINTIES




Estimation

ORDERS OF MAGNITUDE

It is important to develop a ‘feeling” for some of the numbers
that you use. When using a calculator, it is very easy to make
a simple mistake (eg by entering the data incorrectly). A good
way of checking the answer is to first make an estimate before
resorting to the calculator. The multiple-choice paper (paper 1)
does not allow the use of calculators.

Approximate values for each of the fundamental SI units are
given below.

1kg A packet of sugar, 1 litre of water. A person would be
about 50 kg or more

1m Distance between one’s hands with arms outstretched

1s Duration of a heart beat (when resting — it can easily
double with exercise)

lamp  Current flowing from the mains electricity when a

computer is connected. The maximum current to a
domestic device would be about 10 A or so

1 kelvin 1K is a very low temperature. Water freezes at 273 K
and boils at 373 K. Room temperature is about 300 K
1 mol 12 g of carbon12. About the number of atoms of

carbon in the ‘lead” of a pencil

The same process can happen with some of the derived units.

1 ms!' Walking speed. A car moving at 30 m s~! would be fast

1 ms? Quite a slow acceleration. The acceleration of gravity
is 10 ms—?

1N A small force — about the weight of an apple

1V Batteries generally range from a few volts up to 20 or
so, the mains is several hundred volts

1 Pa A very small pressure. Atmospheric pressure is about
10° Pa

1J A very small amount of energy — the work done

lifting an apple off the ground

POSSIBLE REASONABLE ASSUMPTIONS

Everyday situations are very complex. In physics we often simplify a problem by making simple assumptions. Even if we know
these assumptions are not absolutely true they allow us to gain an understanding of what is going on. At the end of the calculation
it is often possible to go back and work out what would happen if our assumption turned out not to be true.

The table below lists some common assumptions. Be careful not to assume too much! Additionally we often have to assume that
some quantity is constant even if we know that in reality it is varying slightly all the time.

Assumption

Example

Object treated as point particle

Mechanics: Linear motion and translational equilibrium

Friction is negligible

Many mechanics situations — but you need to be very careful

No thermal energy (“heat”) loss

Almost all thermal situations

Mass of connecting string, etc. is negligible

Many mechanics situations

Resistance of ammeter is zero Circuits
Resistance of voltmeter is infinite Circuits
Internal resistance of battery is zero Circuits
Material obeys Ohm'’s law Circuits

Machine 100% efficient

Many situations

Gas is ideal

Thermodynamics

Collision is elastic

Only gas molecules have perfectly elastic collisions

Object radiates as a perfect black body

Thermal equilibrium, e.g. planets

SCIENTIFIC NOTATION

Numbers that are too big or too small for decimals are often
written in scientific notation:

ax 10°
where a is a number between 1 and 10 and 4 is an integer.

e.g. 153.2 =1.532 x 10% 0.00872 = 8.72 x 10°*

SIGNIFICANT FIGURES

Any experimental measurement should be quoted with its
uncertainty. This indicates the possible range of values for

the quantity being measured. At the same time, the number
of significant figures used will act as a guide to the amount
of uncertainty. For example, a measurement of mass which

is quoted as 23.456 g implies an uncertainty of + 0.001 g

(it has five significant figures), whereas one of 23.5 g implies
an uncertainty of + 0.1 g (it has three significant figures).

A simple rule for calculations (multiplication or division) is to

quote the answer to the same number of significant digits as
the LEAST precise value that is used.

For a more complete analysis of how to deal with uncertainties
in calculated results, see page 5.
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Uncertainties and error in experimental measurement

ERRORS — RANDOM AND SYSTEMATIC (PRECISION
AND ACCURACY)

An experimental error just means that there is a difference

between the recorded value and the ‘perfect’ or ‘correct’ value.

Errors can be categorized as random or systematic.
Repeating readings does not reduce systematic errors.
Sources of random errors include

e The readability of the instrument.

e The observer being less than perfect.

e The effects of a change in the surroundings.

Sources of systematic errors include

e An instrument with zero error. To correct for zero error the

value should be subtracted from every reading.
e An instrument being wrongly calibrated.

¢ The observer being less than perfect in the same way every
measurement.

An accurate experiment is one that has a small systematic
error, whereas a precise experiment is one that has a small
random error.

true value : measured true | measured

i value value value

I . I

/ probability |,/ |

, that result has a :

: certain value |

1 |

I ‘ |

I I

I |

I I

] > L »
value value

(a) (b)

Two examples illustrating the nature of experimental results:
(a) an accurate experiment of low precision
(b) a less accurate but more precise experiment.

Systematic and random errors can often be recognized from a
graph of the results.

<A &
=2} L4
=4 ﬁ,
= 7 *
e A
o r
A A
]
yid » perfectresults
W x random error
[ x A systematic error
quantity B

Perfect results, random and systematic errors of two
proportional quantities.

GRAPHICAL REPRESENTATION OF UNCERTAINTY
In many situations the best method of presenting and
analysing data is to use a graph. If this is the case, a neat way
of representing the uncertainties is to use error bars. The
graphs below explains their use.

Since the error bar represents the uncertainty range, the ‘best-

fit’ line of the graph should pass through ALL of the rectangles
created by the error bars.

< A © A
2 Ey
c €
@® [19]
S S
o o
quantity B quantity D
L
=1 =
i
< mIStaked The best fit line is
+ assume included by all the error
bars in the upper two
2 graphs. This is not true in

quantitU’F the lower graph.

ESTIMATING THE UNCERTAINTY RANGE

An uncertainty range applies to any

c

experimental value. The idea is that, [—
instead of just giving one value that __(1:?0
implies perfection, we give the likely

range for the measurement. ~90

1. Estimating from first principles C%
All measurement involves a readability -0
error. If we use a measuring cylinder to —60
find the volume of a liquid, we might ~50
think that the best estimate is 73 cm?, 40
but we know that it is not exactly this 30
value (73.00000000000 cm’).

Uncertainty range is + 5 cm?. We say 20
volume = 73 £+ 5 cm’. _'g
Normally the uncertainty range due to Q__:___‘)

readability is estimated as below.

Device Example Uncertainty
Analogue Rulers, meters with  + (half the smallest
scale moving pointers scale division)

Digital scale Top-pan balances,

digital meters

=+ (the smallest scale

division)

2. Estimating uncertainty range from several repeated
measurements

If the time taken for a trolley to go down a slope is measured five
times, the readings in seconds might be 2.01, 1.82, 1.97, 2.16 and
1.94. The average of these five readings is 1.98 s. The deviation of
the largest and smallest readings can be calculated (2.16 — 1.98
=0.18; 1.98 — 1.82 = 0.16). The largest value is taken as the
uncertainty range. In this example the time is 1.98 s + 0.18 s. It
would also be appropriate to quote this as 2.0 + 0.2 s.

SIGNIFICANT FIGURES IN UNCERTAINTIES

In order to be cautious when quoting uncertainties, final values
from calculations are often rounded up to one significant
figure, e.g. a calculation that finds the value of a force to

be 4.264 N with an uncertainty of £ 0.362 N is quoted as

4.3 £ 0.4 N. This can be unnecessarily pessimistic and it is also
acceptable to express uncertainties to two significant figures.

For example, the charge on an electron is 1.602176565 x10 ' C
+ 0.000000035 x10°** C. In data booklets this is sometimes
expressed as 1.602176565(35) x 107 C.
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Uncertainties in calculated results

MATHEMATICAL REPRESENTATION OF UNCERTAINTIES
For example if the mass of a block was measured as 10 =1 g
and the volume was measured as 5.0 £+ 0.2 cm’, then the full

calculations for the density would be as follows.

mass
volume

3

Best value for density = = -150- =2.0gcm

The largest possible value of density = % =2292gcm>’

The smallest possible value of density = % =1.731gcm’

Rounding these values gives density = 2.0 £ 0.3 gcm

We can express this uncertainty in one of three ways — using
absolute, fractional or percentage uncertainties.

If a quantity p is measured then the absolute uncertainty would
be expressed as £Ap.

Then the fractional uncertainty is
+Ap
7
which makes the percentage uncertainty
+Ap
7 X 100%.

In the example above, the fractional uncertainty of the density is
+0.15 or £15%.

Thus equivalent ways of expressing this error are
density = 2.0 £ 0.3 gcm™?
OR density =2.0gcm > £+ 15%

Working out the uncertainty range is very time consuming.
There are some mathematical ‘short-cuts’ that can be used.
These are introduced in the boxes below.

MULTIPLICATION, DIVISION OR POWERS
Whenever two or more quantities are multiplied or divided
and they each have uncertainties, the overall uncertainty
is approximately equal to the addition of the percentage
(fractional) uncertainties.

Using the same numbers from above,

Am==+1g

lg

Am [ 28 ) 401 =+10%
10g

m

AV =+0.2 cm’

3
AV 4 (02em’ | | 04— 4 49
%4 5 cm?

The total % uncertainty in the result = £+ (10 + 4)%
=+14%

14% of 2.0 gecm > =0.28gcm >~ 0.3 gcm?
So density = 2.0 £ 0.3 g cm ™’ as before.

In symbols, if y = a_ch
Ay _Aa Ab , Ac
Then > T + > +—
Power relationships are just a special case of this law.

[note this is ALWAYS added]

fy=a"

Then % = ‘n%‘ (always positive)

For example if a cube is measured to be 4.0 £+ 0.1 cm in length

along each side, then

% Uncertainty in length = + % =+25%

Volume = (length)® = (4.0)*> = 64 cm’

% Uncertainty in [volume] = % uncertainty in [(length)?]
= 3 X (% uncertainty in [length])
=3 X (£2.5 %)
=+75%

Absolute uncertainty = 7.5% of 64 cm?

=48 m’~ 5 m’

Thus volume of cube = 64 + 5 cm?

OTHER MATHEMATICAL OPERATIONS

If the calculation involves mathematical operations other than
multiplication, division or raising to a power, then one has to
find the highest and lowest possible values.

Addition or subtraction

Whenever two or more quantities are added or subtracted and
they each have uncertainties, the overall uncertainty is equal to
the addition of the absolute uncertainties.

In symbols
Hfy=axb
Ay = Aa + Ab (note ALWAYS added)

uncertainty of thickness in a pipe wall

: external radius of pipe
=6.1cm £ 0.1 cm (~ 2%)

1
1 internal radius of pipe
=53cm =+ 0.1 cm (>~ 2%)

thickness of pipe wall = 6.1 — 5.3 cm
= 0.8 cm
uncertainty in thickness = +(0.1 + 0.1) cm
=0.2cm
=+25%

Other functions

There are no ‘short-cuts’ possible. Find the highest and lowest
values.
e.g. uncertainty of sin 0 if § = 60° £+ 5°

<A

55 60 65

Y

if 0= 60°+5°

best value to sin § = 0.87
max. sin § = 0.91
min. sin § = 0.82

sin = 0.87 £ 0.05

worst value used
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Uncertainties in graphs

ERROR BARS

Plotting a graph allows one to visualize all the readings at
one time. Ideally all of the points should be plotted with
their error bars. In principle, the size of the error bar could
well be different for every single point and so they should be
individually worked out.

-
'

quantity a

best fit line

'

quantitg?z

A full analysis in order to determine the uncertainties in the
gradient of a best straight-line graph should always make
use of the error bars for all of the data points.

In practice, it would often take too much time to add all the
correct error bars, so some (or all) of the following short-cuts
could be considered.

e Rather than working out error bars for each point — use the
worst value and assume that all of the other error bars are
the same.

e Only plot the error bar for the ‘worst” point, i.e. the point
that is furthest from the line of best fit. If the line of best fit
is within the limits of this error bar, then it will probably be
within the limits of all the error bars.

e Only plot the error bars for the first and the last points.
These are often the most important points when
considering the uncertainty ranges calculated for the
gradient or the intercept (see right).

e Only include the error bars for the axis that has the worst
uncertainty.

UNCERTAINTY IN SLOPES

If the gradient of the graph has been used to calculate a
quantity, then the uncertainties of the points will give rise

to an uncertainty in the gradient. Using the steepest and the
shallowest lines possible (i.e. the lines that are still consistent
with the error bars) the uncertainty range for the gradient is
obtained. This process is represented below.

steepest gradient

L
-

quantity a

shallowest
gradient

quantitg?a

UNCERTAINTY IN INTERCEPTS

If the intercept of the graph has been used to calculate a
quantity, then the uncertainties of the points will give rise

to an uncertainty in the intercept. Using the steepest and the
shallowest lines possible (i.e. the lines that are still consistent
with the error bars) we can obtain the uncertainty in the
result. This process is represented below.

3

quantity a

maximum value

bestvalue _|
for intercept

minimum value
of intercept

quantitng
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Vectors and scalars

DIFFERENCE BETWEEN VECTORS AND SCALARS

If you measure any quantity, it must have a number AND a
unit. Together they express the magnitude of the quantity.
Some quantities also have a direction associated with them. A
quantity that has magnitude and direction is called a vector
quantity whereas one that has only magnitude is called a
scalar quantity. For example, all forces are vectors.

The table lists some common quantities. The first two quantities

in the table are linked to one another by their definitions (see
page 9). All the others are in no particular order.

Vectors Scalars
Displacement - » Distance
Velocity - » Speed
Acceleration Mass

Force Energy (all forms)
Momentum Temperature

Electric field strength Potential or potential

difference
Magnetic field strength Density
Gravitational field strength Area

Although the vectors used in many of the given examples are
forces, the techniques can be applied to all vectors.

REPRESENTING VECTORS

In most books a bold letter is used to represent a vector
whereas a normal letter represents a scalar. For example F
would be used to represent a force in magnitude AND
direction. The list below shows some other recognized methods.
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Vectors are best shown in

. : pull
diagrams using arrows:
¢ the relative magnitudes
of the vectors involved
are shown by the relative friction |
length of the arrows : +
. normal
¢ the direction of the reaction
vectors is shown by the weight

direction of the arrows.

COMPONENTS OF VECTORS

It is also possible to ‘split” one vector into two (or more) vectors.
This process is called resolving and the vectors that we get are
called the components of the original vector. This can be a very
useful way of analysing a situation if we choose to resolve all the
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Splitting a vector into components

These ‘mutually perpendicular’ directions are totally
independent of each other and can be analysed separately. If
appropriate, both directions can then be combined at the end
to work out the final resultant vector.
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Pushing a block along a rough surface

vectors into two directions that are at right angles to one another.

ADDITION / SUBTRACTION OF VECTORS

If we have a 3 N and a 4 N force, the overall force (resultant
force) can be

anything between .__..3'1\‘ — e 7N

INand 7N 4N

depending on 3N SN

the directions

involved. L—— = /
4N

The way to take 3N 3N

the directions .Y o /

into account 4N -

is to do a scale

diagram and use 3N 4N = o= 1N

the parallelogram

law of vectors.

This process is the same as
adding vectors in turn — the
‘tail” of one vector is drawn

starting from the head of
the previous vector.

Parallelogram of vectors

TRIGONOMETRY

Vector problems can always be solved using scale diagrams,
but this can be very time consuming. The mathematics

of trigonometry often makes it much easier to use the
mathematical functions of sine or cosine. This is particularly
appropriate when resolving. The diagram below shows how to
calculate the values of either of these components.
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See page 14 for an example.
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2.

IB Questions — measurement and uncertainties

1.

B. £1%

An object is rolled from rest down an inclined plane. The
distance travelled by the object was measured at seven different
times. A graph was then constructed of the distance travelled
against the (time taken)? as shown below.
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a) (i) What quantity is given by the gradient of such
a graph? [2]
(ii) Explain why the graph suggests that the collected
data is valid but includes a systematic error. [2]

(iii) Do these results suggest that distance is proportional
to (time taken)?? Explain your answer. [2]

(iv) Making allowance for the systematic error, calculate
the acceleration of the object. [2]

b) The following graph shows that same data after the uncertainty
ranges have been calculated and drawn as error bars.
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Add two lines to show the range of the possible
acceptable values for the gradient of the graph. 2]

The lengths of the sides of a rectangular plate are measured, and
the diagram shows the measured values with their uncertainties.

<50+ 0.5mm —

25+ 0.5mm

’

Which one of the following would be the best estimate of the
percentage uncertainty in the calculated area of the plate?

A. £ 0.02% C. £3%
D. £5%

A stone is dropped down a well and hits the water 2.0 s after
it is released. Using the equation d = %g # and taking
g=9.81 m s ? a calculator yields a value for the depth d of
the well as 19.62 m. If the time is measured to £0.1 s then
the best estimate of the absolute error in 4 is

A. £0.1 m C. £1.0m
B. £0.2 m D. £2.0m

In order to determine the density of a certain type of wood,
the following measurements were made on a cube of the
wood.

Mass =493 ¢g

Length of each side = 9.3 cm

The percentage uncertainty in the measurement of mass is
+0.5% and the percentage uncertainty in the measurement
of length is £1.0%.

The best estimate for the uncertainty in the density is
A. £0.5% C. £3.0%
B. £1.5% D. £3.5%

Astronauts wish to determine the gravitational acceleration
on Planet X by dropping stones from an overhanging cliff.
Using a steel tape measure they measure the height of the
cliff as s = 7.64 m + 0.01 m. They then drop three similar
stones from the cliff, timing each fall using a hand-held
electronic stopwatch which displays readings to one-
hundredth of a second. The recorded times for three drops are
2.46s, 2.31 sand 2.40 s.

a) Explain why the time readings vary by more
than a tenth of a second, although the stopwatch
gives readings to one hundredth of a second. [1]

S

Obtain the average time ¢ to fall, and write it in
the form (value + uncertainty), to the appropriate
number of significant digits. [1]

c) The astronauts then determine the gravitational
acceleration a, on the planet using the formula a,= %
Calculate a, from the values of s and ¢, and determine the
uncertainty in the calculated value. Express the result in
the form
a,= (value £+ uncertainty),
to the appropriate number of significant digits. [3]

Topic 1 (Page 8): Measurements and
uncertainties

1. (a)(i) 0.5 x acceleration down the slope
(a)(iv) 0.36 ms 2

2.C

3.D

4.D
5.(b)24+0.1s
(c)26+0.2ms 2
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