




Introduction
This topic is different from other topics in the 

course book. The content discussed here will be 

used in most aspects of your studies in physics. 

You will come across many aspects of this work 

in the context of other subject matter. Although 

you may wish to do so, you would not be 

expected to read this topic in one go, rather you 

would return to it as and when it is relevant. 

1  MEASUREMENTS AND UNCERTAINTIES

1.1 Measurements in physics

  Nature of science
In physics you will deal with the qualitative and the 
quantitative, that is, descriptions of phenomena 
using words and descriptions using numbers. When 
we use words we need to interpret the meaning and 
one person's interpretation will not necessarily be 
the same as another's. When we deal with numbers 
(or equations), providing we have learned the rules, 
there is no mistaking someone else's meaning. It is 
likely that some readers will be more comfortable 

with words than symbols and vice-versa. It is 
impossible to avoid either methodology on the IB 
Diploma course and you must learn to be careful with 
both your numbers and your words. In examinations 
you are likely to be penalized by writing contradictory 
statements or mathematically incorrect ones. At the 
outset of the course you should make sure that you 
understand the mathematical skills that will make 
you into a good physicist.

Understanding
➔ Fundamental and derived SI units

➔ Scientic notation and metric multipliers

➔ Signicant gures

➔ Orders of magnitude

➔ Estimation

  Applications and skills
➔ Using SI units in the correct format for all 

required measurements, nal answers to 
calculations and presentation of raw and 
processed data

➔ Using scientic notation and metric multipliers

➔ Quoting and comparing ratios, values, and 
approximations to the nearest order of 
magnitude

➔ Estimating quantities to an appropriate number 
of signicant gures
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Fundamental quantities are those quantities that are considered to be 

so basic that all other quantities need to be expressed in terms of them. 

In the density equation ρ = m__
V

 only mass is chosen to be fundamental 

(volume being the product of three lengths), density and volume are 

said to be derived quantities. 

It is essential that all measurements made by one person are understood 

by others. To achieve this we use units that are understood to have 

unambiguous meaning. The worldwide standard for units is known as 

SI– Système international d’unités. This system has been developed from 

the metric system of units and means that, when values of scientic 

quantities are communicated between people, there should never be 

anyconfusion. The SI denes both units and prexes – letters used 

to form decimal multiples or sub-multiples of the units. The units 

themselves are classied as being either fundamental (or base), derived, 

and supplementary.

There are only two supplementary units in SI and you will meet only 

one of these during the Diploma course, so we might as well mention 

them rst. The two supplementary units are the radian (rad) – the 

unit of angular measurement and the steradian (sr) – the unit of “solid 

angle”.The radian is a useful alternative to the degree and is dened as 

the angle subtended by an arc of a circle having the same length as theradius,

Quantities and units
Physicists deal with physical quantities, which are those things  

that are measureable such as mass, length, time, electrical current,  

etc. Quantities are related to one another by equations such as  

ρ = m__
V

which is the symbolic form of saying that density is the ratio 

of the mass of an object to its volume. Note that the symbols in the 

equation are all written in italic (sloping) fonts – this is how we 

can be sure that the symbols represent quantities. Units are always 

written in Roman (upright) font because they sometimes share the 

same symbol with a quantity. So “m” represents the quantity “mass” 

but “m” represents the unit “metre”. We will use this convention 

throughout the course book, and it is also the convention usedby 

theIB.

  Nature of science

The use of symbols
The use of Greek letters such as rho (ρ) is very 

common in physics. There are so many quantities 

that, even using the 52 Arabic letters (lower case 

and capitals), we soon run out of unique symbols. 

Sometimes symbols such as d and x have multiple 

uses, meaning that Greek letters have become just 

one way of trying to tie a symbol to a quantity 

uniquely. Of course, we must consider what 

happens when we run out of Greek letters too – we 

then use Russian ones from the Cyrillic alphabet.

α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ



alpha

Greek Russian

beta

gamma

delta

epsilon

zeta

eta

theta

iota

kappa

lambda

mu

ν

ξ

ο

π

ρ

σ

τ

υ

φ

χ

ψ

ω

nu

ksi

omicron

pi

rho

sigma

tau

upsilon

phi

chi

psi

omega
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as shown in gure 1. We will look at the radian in more detail in 

Sub-topic6.1. The steradian is the three-dimensional equivalentof 

the radian and uses the idea of mapping a circle on to the surface of 

a sphere.

Fundamental and derived units

In SI there are seven fundamental units and you will use six of these 

on the Diploma course (the seventh, the candela, is included here for 

completeness). The fundamental quantities are length, mass, time, 

electric current, thermodynamic temperature, amount of substance, and 

luminous intensity. The units for these quantities have exact denitions 

and are precisely reproducible, given the right equipment. This means 

that any quantity can, in theory, be compared with the fundamental 

measurement to ensure that a measurement of that quantity is accurate. 

In practice, most measurements are made against more easily achieved 

standards so, for example, length will usually be compared with a 

standard metre rather than the distance travelled by light in a vacuum. 

You will not be expected to know the denitions of the fundamental 

quantities, but they are provided here to allow you to see just how 

precise they are.

metre (m): the length of the path travelled by light in a vacuum during 

a time interval of  1_________
299 792 458

 of a second.

kilogram (kg): mass equal to the mass of the international prototype 

of the kilogram kept at the Bureau International des Poids et Mesures at 

Sèvres, near Paris. 

second (s): the duration of 9 192 631 770 periods of the radiation 

corresponding to the transition between the two hyperne levels of the 

ground state of the caesium-133 atom. 

ampere (A): that constant current which, if maintained in two 

straightparallel conductors of innite length, negligible circular  

cross-section, and placed 1 m apart in vacuum, would produce between 

these conductors a force equal to 2 × 10 7 newtons per metre of length. 

kelvin (K): the fraction  1_____
273.16

 of the thermodynamic temperature of the 

triple point of water.

mole (mol): the amount of substance of a system that contains as many 

elementary entities as there are atoms in 0.012 kg of carbon–12. When 

the mole is used, the elementary entities must be specied and may be 

atoms, molecules, ions, electrons, other particles, or specied groups of 

such particles.

candela (cd): the luminous intensity, in a given direction, of a source 

that emits monochromatic radiation of frequency 540 × 1012 hertz and 

that has a radiant intensity in that direction of  1___
683

 watt per steradian.

All quantities that are not fundamental are known as derived and these 

can always be expressed in terms of the fundamental quantities through a 

relevant equation. For example, speed is the rate of change of distance with 

respect to time or in equation form v = s___
t

 (where s means the change in 

distance and t means the change in time). As both distance (and length) 

and time are fundamental quantities, speed is a derived quantity.

▲ Figure 2 The international prototype kilogram.

▲ Figure 1 Denition of the radian.

r

1 rad

r

r

TOK

Deciding on what is 

fundamental

Who has made the decision 

that the fundamental 

quantities are those of 

mass, length, time, electrical 

current, temperature, 

luminous intensity, and 

amount of substance? In an 

alternative universe it may 

be that the fundamental 

quantities are based on force, 

volume, frequency, potential 

dierence, specic heat 

capacity, and brightness. 

Would that be a drawback 

or would it have meant that 

“humanity” would have 

progressed at a faster rate?
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The units used for fundamental quantities are unsurprisingly known as 

fundamental units and those for derived quantities are known as derived 

units. It is a straightforward approach to be able to express the unit of 

any quantity in terms of its fundamental units, provided you know the 

equation relating the quantities. Nineteen fundamental quantities have 

their own unit but it is also valid, if cumbersome, to express this in terms 

of fundamental units. For example, the SI unit of pressure is the pascal 

(Pa), which is expressed in fundamental units as m 1 kg s 2

  Nature of science

Capitals or lower case?
Notice that when we write the unit newton in full, we use a lower case 

n but we use a capital N for the symbol for the unit – unfortunately 

some word processors have default setting to correct this so take care! 

All units written in full should start with a lower case letter, but those 

that have been derived in honour of a scientist will have a symbol that 

is a capital letter. In this way there is no confusion between the scientist 

and the unit: “Newton” refers to Sir Isaac Newton but “newton” means 

the unit. Sometimes units are abbreviations of the scientist’s surname, 

so amp (which is a shortened form of ampère anyway) is named after 

Ampère, the volt after Volta, the farad, Faraday, etc.

▲ Figure 3 Choosing fundamental units in 

an alternative universe.

Example of how to relate fundamental and derived units
The unit of force is the newton (N). This is a derived unit and can 

be expressed in terms of fundamental units as kg m s 2. The reason 

for this is that force can be dened as being the product of mass and 

acceleration or F = ma. Mass is a fundamental quantity but acceleration 

is not. Acceleration is the rate of change of velocity or a = v___
t

 where v

represents the change in velocity and t the change in time. Although 

time is a fundamental quantity, velocity is not so we need to take 

another step in dening velocity in fundamental quantities. Velocity is 

the rate of change of displacement (a quantity that we will discuss later 

in the topic but, for now, it simply means distance in a given direction). 

So the equation for velocity is v = s___
t

 with s being the change in 

displacement and t again being the change in time. Displacement (a 

length) and time are both fundamental, so we are now in a position to 

put N into fundamental units. The unit of velocity is m s 1 and these are 

already fundamental– there is no shortened form of this. The units of 

acceleration will therefore be those ofvelocity divided by time and so 

will be  m  s  1____
s  which is written as m s 2. So the unit of force will be the unit 

of mass multiplied by the unit of acceleration and, therefore, be kg m s 2. 

This is such a common unit that it has its own name, the newton, 

(N≡kg m s 2 – a mathematical way of expressing that the two units are 

identical). So if you are in an examination and forget the unit of force 

you could always write kg m s 2 (if you have time to work it out!).

Signicant gures
Calculators usually give you many digits in an answer. How do you 

decide how many digits to write down for the nal answer? 

Note 

If you are reading this at the 

start of the course, it may seem 

that there are so many things 

that you might not know; but, 

take heart, “Rome was not 

built in a day” and soon much 

will come as second nature. 

When we write units as m s 1

and m s 2 it is a more eective 

and preferable way to writing 

what you may have written in 

the past as m/s and m/s2; both 

forms are still read as “metres 

per second” and “metres per 

second squared.”
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Scientists use a method of rounding to a certain number of signicant 

gures (often abbreviated tos.f.). “Signicant” here means meaningful.

Consider the number 84 072, the 8 is the most signicant digit, because 

it tells us that the number is eighty thousand and something. The 4 is 

the next most signicant telling us that there are also four thousand and 

something. Even though it is a zero, the next digit, the 0, is the third 

most signicant digit here. 

When we face a decimal number such as 0.00245, the 2 is the most 

signicant digit because it tells us that the number is two thousandth 

and something. The 4 is the next most signicant, showing that there are 

four ten thousandths and something.

If we wish to express this number to two signicantgures we need to 

round the number from three to two digits. If the last number had been 

0.00244 we would have rounded down to 0.0024 and if it had been 

0.00246 we would have rounded up to 0.0025. However, it is a 5 so what 

do we do? In this case there is equal justication for rounding up and 

down, so all you really need to be is consistent with your choice for a set of 

gures – you can choose to round up or down. Often you will have further 

digits to help you, so if the number had been 0.002451 and you wanted it 

rounded to two signicant gures it would be rounded up to 0.0025.

Some rules for using signicant gures
● A digit that is not a zero will always be signicant – 345 is three 

signicant gures (3s.f.).

● Zeros that occur sandwiched between non-zero digits are always 

signicant – 3405 (4 s.f.); 10.3405 (6 s.f.).

● Non-sandwiched zeros that occur to the left of a non-zero digit are 

not signicant – 0.345 (3 s.f); 0.034 (2 s.f.).

● Zeros that occur to the right of the decimal point are signicant, 

provided that they are to the right of a non-zero digit – 1.034 (4 s.f.); 

1.00 (3 s.f.); 0.34500 (5 s.f.); 0.003 (1 s.f.).

● When there is no decimal point, trailing zeros are not signicant 

(tomake them signicant there needs to be a decimal point)  

– 400 (1s.f.); 400. (3 s.f.) – but this is rarely written.

Scientic notation

One of the fascinations for physicists is dealing with the very large 

(e.g. the universe) and the very small (e.g. electrons). Many physical 

constants (quantities that do not change) are also very large or very 

small. This presents a problem: how can writing many digits be avoided? 

The answer is to use scientic notation.

The speed of light has a value of 299 792 458m s 1. This can be rounded to 

three signicant gures as 300 000 000 m s 1. There are a lot of zeros in this 

and it would be easy to miss one out or add another. In scientic notation 

this number is written as 3.00× 108 m s 1 (to three signicant gures).

Let us analyse writing another large number in scientic notation. The 

mass of the Sun to four signicant gures is 1 989 000 000 000 000 000 

000 000 000 000 kg (that is 1989 and twenty-seven zeros). To convert 
5
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this into scientic notation we write it as 1.989 and then we imagine 

moving the decimal point 30 places to the left (remember we can write 

as many trailing zeros as we like to a decimal number without changing 

it). This brings our number back to the original number and so it gives 

the mass of the Sun as 1.989 × 1030 kg.

A similar idea is applied to very small numbers such as the charge on 

the electron, which has an accepted value of approximately 0.000 000 

000 000 000 000 1602 coulombs. Again we write the coefcient as 1.602 

and we must move the decimal point 19 places to the right in order to 

bring 0.000 000 000 000 000 000 1602 into this form. The base is always 

10 and moving our decimal point to the right means the exponent is 

negative. We can write this number as 1.602 × 10 19 C.

Apart from avoiding making mistakes, there is a second reason why 

scientic notation is preferable to writing numbers in longhand. This is 

when weare dealing with several numbers in an equation. Inwriting 

the value of the speed of light as 3.00× 108 m s 1, 3.00 is called the 

“coefcient” of the number and it will always be a number between 1 

and10. The 10 is called the “base” and the 8 is the“exponent”.

There are some simple rules to apply:

● When adding or subtracting numbers the exponent must be the 

same or made to be the same.

● When multiplying numbers we add the exponents. 

● When dividing numbers we subtract one exponent from the other.

● When raising a number to a power we raise the coefcient to the 

power and multiply the exponent by the power.

Worked examples

In these examples we are going to evaluate each 

of the calculations.

1 1.40 × 106
+ 3.5 × 105

Solution

These must be written as 1.40 × 106
+ 0.35 × 106

so that both numbers have the same exponents.

They can now be added directly to give 1.75 × 106

2 3.7 × 105
× 2.1 × 108

Solution

The coefcients are multiplied and the exponents 

are added, so we have: 3.7 × 2.1 = 7.77 (which we 

round to 7.8 to be in line with the data – something 

we will discuss later in this topic) and: 5 + 8 = 13

So we write this product as: 7.8 × 1013

3 3.7 × 105
× 2.1 × 10 8

Solution

Again the coefcients are multiplied and the 

exponents are added, so we have: 3.7 × 2.1 = 7.8 

Here the exponents are subtracted (since the 8 is 

negative) to give: 5  8 = −3 

So we write this product as: 7.8 × 10 3

4  
4.8 × 105
_
3.1 × 102

Solution

The coefcients are divided and the exponents are 

subtracted so we have: 4.8 ÷ 3.1 = 1.548 (which 

we round to 1.5)

And 5  2 = 3

This makes the result of the division 1.5 × 103

5 (3.6 × 107)3

Solution

We cube 3.6 and 3.63
= 46.7 

And multiply 7 by 3 to give 21

This gives 46.7 × 1021, which should become  

4.7 × 1022 in scientic notation.
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Metric multipliers (prexes)
Scientists have a second way of abbreviating units: by using metric 

multipliers (usually called “prexes”). An SI prex is a name or 

associated symbol that is written before a unit to indicate the 

appropriate power of10. So instead of writing 2.5 × 1012 J we could 

alternatively write this as 2.5 TJ (terajoule). Figure 4 gives the 20 SI 

prexes – these are provided for you as part of the data booklet used 

in examinations. 

Orders of magnitude
An important skill for physicists is to understand whether or not the 

physics being considered is sensible. When performing a calculation in 

which someone’s mass was calculated to be 5000 kg, this should ring 

alarm bells. Since average adult masses (“weights”) will usually be 

60–90 kg, a value of 5000 kg is an impossibility. 

A number rounded to the nearest power of 10 is called an order of 

magnitude. For example, when considering the average adult human 

mass: 60–80 kg is closer to 100 kg than 10 kg, making the order of 

magnitude 102 and not 101. Of course, we are not saying that all adult 

humans have a mass of 100 kg, simply that their average mass is closer 

to 100 than 10. In a similar way, the mass of a sheet of A4 paper may be 

3.8 g which, expressed in kg, will be 3.8 × 10 3 kg. Since 3.8 is closer to 

1 than to 10, this makes the order of magnitude of its mass 10 3 kg. This 

suggests that the ratio of adult mass to the mass of a piece of paper (should 

you wish to make this comparison)= 102____
10 3

= 102−( 3) = 105 = 100 000. In 

other words, an adult human is 5 orders of magnitude (5powers of 10) 

heavier than a sheet of A4 paper. 

Estimation
Estimation is a skill that is used by scientists and others in order to 

produce a value that is a useable approximation to a true value. 

Estimation is closely related to nding an order of magnitude, but may 

result in a value that is more precise than the nearest power of 10.

Whenever you measure a length with a ruler calibrated in millimetres 

you can usually see the whole number of millimetres but will need to 

estimate to the next  1__
10

 mm – you may need a magnifying glass to help 

you to do this. The same thing is true with most non-digital measuring 

instruments. 

Similarly, when you need to nd the area under a non-regular curve, 

you cannot truly work out the actual area so you will need to nd the 

area of a rectangle and estimate how many rectangles there are. Figure5 

shows a graph of how the force applied to an object varies with time. 

The area under the graph gives the impulse (as you will see in Topic2). 

There are 26 complete or nearly complete yellow squares under the 

curve and there are further partial squares totalling about four full 

squares in all. This gives about 30 full squares under the curve. Each 

curve has an area equivalent to 2 N × 1 s = 2 N s. This gives an estimate 

of about 60 N s for the total impulse. 

Factor Name Symbol

Υ

Ζ

Ε

Ρ

Τ

Μ

d

c

n

p

f

a

z

y

m

1024

1021

1018

1015

1012

109

106

103

102

101

10 1

10 2

10 9

10 12

10 15

10 18

10 21

10 24

10 3

10 6 

yotta

zetta

exa

peta

tera

giga

mega

deci

centi

nano

pico

femto

atto

zepto

yocto

milli

micro

kilo

hecto

deka

▲ Figure 4 SI metric multipliers.
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In an examination, estimation questions will always have a  

tolerance given with the accepted answer, so in this case it might be  

(60 ± 2) N s.

0

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

time/s
fo

rc
e

/N

These two partial 

squares may be 

combined to approximate 

to a whole square, etc.

▲ Figure 5

1.2 Uncertainties and errors

  Nature of science
In Sub-topic 1.1 we looked at the how we dene 
the fundamental physical quantities. Each of these 
is measured on a scale by comparing the quantity 
with something that is “precisely reproducible”. By 
precisely reproducible do we mean “exact”? The 
answer to this is no. If we think about the denition 
of the ampere, we will measure a force of 2 × 107 N. 
If we measure it to be 2.1 × 107 it doesn’t invalidate 
the measurement since the denition is given to just 
one signicant gure. All measurements have their 
limitations or uncertainties and it is important that 
both the measurer and the person working with the 
measurement understand what the limitations are. 
This is why we must always consider the uncertainty 
in any measurement of a physical quantity.

Understanding
➔ Random and systematic errors

➔ Absolute, fractional, and percentage uncertainties

➔ Error bars

➔ Uncertainty of gradient and intercepts

Applications and skills
➔ Explaining how random and systematic errors 

can be identied and reduced

➔ Collecting data that include absolute and/or 
fractional uncertainties and stating these as an 
uncertainty range (using ±)

➔ Propagating uncertainties through calculations 
involving addition, subtraction, multiplication, 
division, and raising to a power

➔ Using error bars to calculate the uncertainty in 
gradients and intercepts

Equations
Propagation of uncertainties:

If: y = a ± b

then: y = a + b

If: y =
ab_____
c

then:   
y______

y =  
a______

a +
b______

b
+

c______
c

If: y = an

then:   
y _______

y =  ⎜n a______
a ⎟
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Uncertainties in measurement

Introduction
No experimental quantity can be absolutely accurate when measured– 

it is always subject to some degree of uncertainty. We will look at the 

reasons for this in this section. 

There are two types of error that contribute to our uncertainty about a 

reading – systematic and random.

Systematic errors
As the name suggests, these types of errors are due to the system being 

used to make the measurement. This may be due to faulty apparatus. For 

example, a scale may be incorrectly calibrated either during manufacture 

of the equipment, or because it has changed over a period of time. 

Rulers warp and, as a result, the divisions are no longer symmetrical. 

A timer can run slowly if its quartz crystal becomes damaged (not 

because the battery voltage has fallen– when the timer simply stops). 

When measuring distances from sealed radioactive sources or light-

dependent resistors (LDRs), it is hard to know where the source is 

actually positioned or where the active surface of the LDR is. 

The zero setting on apparatus can drift, due to usage, so that it no longer 

reads zero when it should – this is called a zero error

Figure 1 shows a digital calliper with the jaws closed. This should read 

0.000 mm but there is a zero error and it reads 0.01 mm. This means that 

all readings will be 0.01 mm bigger than they should be. The calliper can 

be reset to zero or 0.01 mm could be subtracted from any readings made.

Often it is not possible to spot a systematic error and experimenters have 

to accept the reading on their instruments, or else spend signicant effort 

in making sure that they are re-calibrated by checking the scale against a 

standard scale. Repeating a reading never removes the systematic error. 

The real problem with systematic errors is that it is only possible to check 

them by performing the same task with another apparatus. If the two 

sets give the same results, the likelihood is that they are both performing 

well; however, if there is disagreement in the results a third set may be 

needed to resolve any difference. 

In general we deal with zero errors as well as we can and then move 

on with our experimentation. When systematic errors are small, a 

measurement is said to be accurate

▲ Figure 1 Zero error on digital calliper.
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  Nature of science

Systematic errors
Uncertainty when using a 300 mm ruler may be 

quoted to ±0.5 mm or ±1 mm depending on your 

view of how precisely you can gauge the reading. 

To be on the safe side you might wish to use the 

larger uncertainty and then you will be sure that 

the reading lies within your bounds. 

▲ Figure 2 Millimeter (mm) scale on ruler.

You should make sure you observe the scale from 

directly above and at right angles to the plane of 

the ruler in order to avoid parallax errors.

1234678910

▲ Figure 3 Parallax error.

The meter in gure 4 shows an analogue ammeter 

with a fairly large scale – there is justication in 

giving this reading as being (40 ± 5) A.

▲ Figure5 Digital scale.▲ Figure 4 Analogue scale.

The digital ammeter in gure 5 gives a value  

of 0.27 A which should be recorded as  

(0.27 ± 0.01) A. 

In each of these examples the uncertainty is 

quoted to the same precision (number of 

decimal places) as the reading – it is essential 

to do this as the number of decimal places is 

always indicative of precision. When we write an 

energy value as being 8 J we are implying that it 

is (8 ± 1) J and if we write it as 8.0 J it implies a 

precision of ±0.1J.

Random errors
Random errors can occur in any measurement, but crop up most 

frequently when the experimenter has to estimate the last signicant 

gure when reading a scale. If an instrument is insensitive then it may 

be difcult to judge whether a reading would have changed in different 

circumstances. For a single reading the uncertainty could well be better 

than the smallest scale division available. But, since you are determining 

the maximum possible range of values, it is a sensible precaution to 

use this larger precision. Dealing with digital scales is a problem – the 

likelihood is that you have really no idea how precisely the scales are 

calibrated. Choosing the least signicant digit on the scale may severely 

underestimate the uncertainty but, unless you know the manufacturer’s 

data regarding calibration, it is probably the best you can do.

When measuring a time manually it is inappropriate to use the precision 

of the timer as the uncertainty in a reading, since your reaction time 

is likely to be far greater than this. For example, if you timed twenty 

oscillations of a pendulum to take 16.27 s this should be recorded as 

being (16.3 ± 0.1) s. This is because your reaction time dominates the 

precision of the timer. If you know that your reaction time is greater 

than 0.1 s then you should quote that value instead of 0.1 s.
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The best way of handling random errors is to take a series of repeat 

readings and nd the average of each set of data. Half the range of the 

values will give a value that is a good approximation to the statistical 

value that more advanced error analysis provides. The range is the 

largest value minus the smallest value.

Readings with small random errors are said to be precise (this 

does not mean they are accurate, however)

Worked examples

1 In measuring the angle of refraction at an air-

glass interface for a constant angle of incidence 

the following results were obtained (using a 

protractor with a precision of ± 1o):

 45°, 47°, 46°, 45°, 44°

How should we express the angle of 

refraction?

Solution 

The mean of these values is 45.4° and the range is 

(47° − 44°) = 3°

Half the range is 1.5°

How then do we record our overall value for 

the angle of refraction?

Since the precision of the protractor is ±1°, 

weshould quote our mean to a whole number 

(integral) value and it will round down to 

45°. We should not minimize our uncertainty 

unrealistically and so we should round this up 

to 2°. This means that the angle of refraction 

should be recorded as 45± 2°

2 The diagram below shows the position of the 

meniscus of the mercury in a mercury-in-glass 

thermometer.

0T/°C 1 2 3 4 5 6 7 8 9 10

Express the temperature and its uncertainty to 

an appropriate number of signicant gures.

Solution 

The scale is calibrated in degrees but they are 

quite clear here, so it is reasonable to expect 

a precision of ±0.5 °C. The meniscus is closer 

to 6 than to 6.5 (although that is a judgement 

decision) so the values should be recorded as 

(6.0± 0.5) °C. Remember the measurement and 

the uncertainty should be to the same number of 

decimal places.

3 A student takes a series of measurements 

of a certain quantity. He then averages his 

measurements. What aspects of systematic 

and random uncertainties is he addressing by 

taking repeats and averages?

Solution 

Systematic errors are not dealt with by means of 

repeat readings, but taking repeat readings and 

averaging them should cause the average value 

to be closer to the true value than a randomly 

chosen individual measurement.

Absolute and fractional uncertainties 

The values of uncertainties that we have been looking at are 

called absolute uncertainties. These values have the same units 

as thequantity and should be written to the same number of 

decimalplaces.

Dividing the uncertainty by the value itself leaves a dimensionless quantity 

(one with no units) and gives us the fractional uncertainty. Percentaging 

the fractional uncertainty gives the percentage uncertainty
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Worked example

Calculate the absolute, fractional, and percentage 

uncertainties for the following measurements of a 

force, F:

2.5 N, 2.8 N, 2.6 N

Solution

mean value =
2.5 N + 2.8 N + 2.6 N________________

3
= 2.63 N, this is 

rounded down to 2.6 N

range = (2.8  2.5) N = 0.3 N, giving an  

absolute uncertainty of 0.15N that rounds  

up to 0.2 N

We would write our value for F as (2.6 ± 0.2) N

the fractional uncertainty is  0.2___
2.6

= 0.077 and the 

percentage uncertainty will be 0.077 × 100% =

7.7%

Propagation of uncertainties
Often we measure quantities and then use our measurements to 

calculate other quantities with an equation. The uncertainty in 

the calculated value will be determined from a combination of the 

uncertainties in the quantities that we have used to calculate the value 

from. This is known as propagation of uncertainties

There are some simple rules that we can apply when we are propagating 

uncertainties. In more advanced treatment of this topic we would 

demonstrate how these rules are developed, but we are going to focus 

on your application of these rules here (since you will never be asked to 

prove them and you can look them up in a text book or on the Internet 

if you want further information). 

In the uncertainty equations discussed next, a, b, c, etc. are the quantities 

and a, b, c, etc. are the absolute uncertainties in these quantities.

Addition and subtraction

This is the easiest of the rules because when we add or subtract 

quantities we always add their absolute uncertainties.

When a = b + c  or a = b c  then a = b + c

In order to use these relationships don’t forget that the quantities being 

added or subtracted must have the same units. 

So if we are combining two masses m
1
 and m

2
 then the total mass m will 

be the sum of the other two masses. 

m
1
= (200 ± 10) g and m

2
= (100 ± 10) g so m = 300 g and m = 20 g  

meaning we should write this as: 

m = (300 ± 20) g 

We use subtraction more often than we realise when we are measuring 

lengths. When we set the zero of our ruler against one end of an object 

we are making a judgement of where the zero is positioned and this really 

means that the value is (0.0 ± 0.5) mm.

A ruler is used to measure a metal rod as shown in gure 6. The length 

is found by subtracting the smaller measurement from the larger one. 

The uncertainty for each measurement is ± 0.5 mm. 

Larger measurement = 195.0 mm

Smaller measurement = 118.5 mm

Length = (76.5 ± 1.0) mm as the uncertainty is 0.5 mm + 0.5 mm ▲ Figure 6 Measuring a length.
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  Nature of science

Subtracting values
When subtraction is involved in a relationship 

you need to be particularly careful. The resulting 

quantity becomes smaller in size (because of 

subtraction), while the absolute uncertainty becomes 

larger(because of addition). Imagine two values that 

are subtracted: b = 4.0 ± 0.1 and c =3.0 ± 0.1. 

We won’t concern ourselves with what these 

quantities actually arehere.

If a = b c then a = 1.0 and since a = b + c

then a = 0.2

We have gone from two values in which the 

percentage uncertainty is 2.5% and 3.3%

respectively to a calculated value with uncertainty 

of 20%. Now that really is propagation of 

uncertainties!

Multiplication and division

When we multiply or divide quantities we add their fractional or 

percentage uncertainties, so:

when a = bc or a =
b
c or a =

c

b

then  a___
a =

b___
b

+
c___
c

There are very few relationships in physics that do not include some 

form of multiplication or division. 

We have seen that density ρ is given by the expression ρ =   
m__
V

 where 

m is the mass of a sample of the substance and V is its volume. For a 

particular sample, the percentage uncertainty in the mass is 5% and for 

the volume is 12%

The percentage uncertainty in the calculated value of the density will 

therefore be ±17%

If the sample had been cubical in shape and the uncertainty in each 

of the sides was 4% we can see how this brings about a volume with 

uncertainty of 12%:

For a cube the volume is the cube of the side length (V = l 3 = l × l × l) 

so  V___
V

=
l__
l

+
l__
l

+
l__
l

= 4% + 4% + 4% = 12%

This example leads us to:

Raising a quantity to a power

From the cube example you might have spotted that  V___
V

= 3  l__
l

This result can be generalized so that when a = bn (where n can be a 

positive or negative whole, integral, or decimal number)

then  a___
a = ⎜n   

b___
b ⎟

The modulus sign is included as an alternative way of telling us that the 

uncertainty can be either positive or negative.
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Worked example

The period T of oscillation of a mass m on a spring, 

having spring constant k is T = 2π √m__
k

Don’t worry about what these quantities actually mean 

at this stage.

The uncertainty in k is 11% and the uncertainty in 

m is 5%. 

Calculate the approximate uncertainty in a value 

for T of 1.20 s.

Solution

First let’s adjust the equation a little – we can 

write it as

T = 2π(m__
k )

1
2 which is of the form a = 2π (b

c )
n

Although we will truncate π, we can really write it 

to as many signicant gures as we wish and so the 

percentage uncertainty in π, as in 2 will bezero.

Using the division and power relationships: 

a___
a = n   b___

b
+ n   c___

c  or here  T___
T

= 1
2

m___
m + 1

2
k___
k

so the percentage uncertainty in T will be half that 

in m + half that in k

This means that the percentage error in  

T = 0.5 × 5% + 0.5 × 11% = 8%

If the measured value of T is 1.20 s then the 

absolute uncertainty is 1.20 × 8___
100

= 0.096 This 

rounds up to 0.10 and so we quote T as being 

(1.20 ± 0.10) s.

Remember that the quantity and the uncertainty 

must be to the same number of decimal places 

and so the zeros are important, as they give us the 

precision in the value.

Drawing graphs
An important justication for experimental work is to investigate the 

relationship between physical quantities. One set of values is rarely very 

revealing even if it can be used to calculate a physical constant, such as 

dividing the potential difference across a resistor by the current in the 

resistor to nd the resistance. Although the calculation does tell you the 

resistance for one value of current, it says nothing about whether the 

resistance depends upon the current. Taking a series of values would tell 

you if the resistance was constant but, with the expected random errors, 

it would still not be denitive. By plotting a graph and drawing the line 

of best t the pattern of results is far easier to spot, whether it is linear or 

some other relationship.

Error bars
In plotting a point on a graph, uncertainties are recognized by adding 

error bars. These are vertical and horizontal lines that indicate the 

possible range of the quantity being measured. Suppose at a time of 

(0.2± 0.05) s the speed of an object was (1.2 ± 0.2) m s 1 this would be 

plotted as shown in gure 7. 

This means that the value could possibly be within the rectangle that 

touches the ends of the error bars as shown in gure 8. This is the zone 

of uncertainty for the data point. A line of best t should be one that 

spreads the points so that they are evenly distributed on both sides of the 

line and also passes through the error bars.

Uncertainties with gradients
Using a computer application, such as a spreadsheet, can allow you to 

plot a graph with data points and error bars. You can then read off the 

gradient and the intercepts from a linear graph directly. The application 
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▲ Figure 7 Error bars.

▲ Figure 8 Zone of uncertainty.
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will automatically draw the best trend line. You can then add the trend 

lines with the steepest and shallowest gradients that are just possible – 

while still passing through all the error bars. Students quite commonly, 

but incorrectly, use the extremes of the error bars that are furthest apart 

on the graphs. Although these could be appropriate, it is essential that all 

the trend lines you draw pass through all of the error bars.

In an experiment to measure the electromotive force (emf) and internal 

resistance of a cell, a series of resistors are connected across the cell. The 

currents in and potential differences across the resistors are then measured. 

A graph of potential difference, V, against current, I, should give a straight 

line of negative gradient. As you will see in Topic5 the emf of a cell is 

related to the internal resistance r by theequation:

ε = I(R + r) = V + Ir

This can be rearranged to give V = ε Ir

So a graph of V against I is of gradient r (the internal resistance) and 

intercept ε (the emf of the cell).

The table on the right shows a set of results from this experiment. With 

a milliammeter and voltmeter of low precision the repeat values are 

identical to the measurements given in the table.

The graph of gure 9 shows the line of best t together with two lines 

that are just possible.

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

20 40 60

I/mA

EMF and Internal Resistance

V/V

80 100 120 140

V = −0.013I + 1.68

V = −0.0127I + 1.64

V = −0.0153I + 1.78

▲ Figure 9 A graph of potential dierence, V, against current, I, for a cell.

Converting from milliamps to amps, the equations of these lines suggest that 

the internal resistance (the gradient) is 13.0  and the range is from 12.7 

to 15.3  (= 2.6 ) meaning that half the range = 1.3 

This leads to a value for r = (13.0 ± 1.3) . 

The intercept on the V axis of the line of best t = 1.68 which rounds 

to 1.7 V (since the data is essentially to 2 signicant gures). The range 

of the just possible lines gives 1.6 to 1.8 V (when rounded to two 

signicant gures). This means that ε = (1.6 ± 0.1) V.

I ± 5/mA V ± 0.1/V

15 1.5

20 1.4

25 1.4

30 1.3

35 1.2

50 1.1

55 0.9

70 0.8

85 0.6

90 0.5
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  Nature of science

Drawing graphs manually
●  One of the skills expected of physicists is to 

draw graphs by hand and you may well be 

tested on this in the data analysis question in 

Paper 3 of the IB Diploma Programme physics 

examination. You are also likely to need to 

draw graphs for your internal assessment. 

●  Try to look at your extreme values so that you 

have an idea of what scales to use. You will  

need a minimum of six points to give you a 

reasonable chance of drawing a valid line.

●  Use scales that will allow you to spread your 

points out as much as possible (you should 

ll your page, but not overspill onto a second 

sheet as that would damage your line quality 

and lose you marks). You can always calculate 

an intercept if you need one; when you don’t 

include the origin, your axes give you a false 

origin (which is ne).

●  Use sensible scales that will make both plotting 

and your calculations clear-cut (avoid scales that 

are multiples of 3, 4, or 7 – stick to 2, 5, and 10).

●  Try to plot your graph as you are doing the 

experiment – if apparently unusual values 

crop up, you will see them and can check that 

they are correct.

●  Before you draw your line of best t, you need 

to consider whether or not it is straight or a 

curve. There may well be anomalous points 

(outliers) that you can ignore, but if there is 

a denite trend to the curve then you should 

opt for a smooth curve drawn with a single 

line and not “sketched” artistically!

Figure 10 shows some of the key elements of a good hand-drawn graph. Calculating the gradients on

the graph is very useful when checking values.

260
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280 300 320 340
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line that is just possiblebest straight line
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V
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0
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3

gradient of best straight line

(59.6 − 42.0) × 10 6 m3

(398 − 288) K
=

= 1.60 × 10 7 m3 K 1

gradient of just possible line

(58.6 − 42.0) × 10 6 m3

(398 − 286) K
=

= 1.48 × 10 7 m3 K 1

All values on V axis
have been divided by

10 6 and are in m3

False origin – neither
line has been forced
through this point

Use a large gradient
triangle to reduce
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Second “just possible”
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for a real investigation – 
it has been missed out
here so that you can
clearly see the values
on the two lines

Uncertainties in
temperature are too 
small to draw error bars

▲ Figure 10 Hand-drawn graph.
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Linearizing graphs
Many relationships between physical quantities are not directly 

proportional and a straight line cannot be obtained simply by plotting 

one quantity against the other. There are two approaches to dealing 

with non-proportional relationships: when we know the form of the 

relationship and when we do not.

If we do know the form of the relationship such as p ∝  1__
V

(for a gas held 

at constant temperature) or T ∝  √l   (for a simple pendulum) we can plot 

a graph of one quantity against the power of the other quantity to obtain 

a straight-line origin graph. An alternative for the simple pendulum is to 

plot a graph of T 2 against l which will give the same result. 

You should think about the propagation of errors when you 

consider the relative merits of plotting T against √l or T 2 against l.

The following discussion applies to HL examinations, but offers such a useful 

technique that SL students may wish to utilize it when completing IAs or if they 

undertake an Extended Essay in a science subject.

If we don’t know the actual power involved in a relationship, but we 

suspect that one quantity is related to the other, we can write a general 

relationship in the form y = kxn where k and n are constants. 

By taking logs of this equation we obtain log y = log k + n log x which we 

can arrange into log y = n log x + log k and is of the form y = m x + c. This 

means that a graph of log y against log x will be linear of gradient n and 

have an intercept on the log y axis of log k

This technique is very useful in carrying out investigations when a 

relationship between two quantities really is not known. The technique 

is also a useful way of dealing with exponential relationships by taking 

logs to base e, instead of base 10. For example, radioactive nuclides 

decay so that either the activity or the number of nuclei remaining falls 

according to the same general form. Writing the decay equation for the 

number of nuclei remaining gives:

N = N
0
e λt by taking logs to the base e we get lnN = lnN

0
λt (where 

lnN is the usual way of writing log
e
N).

By plotting a graph of lnN against t the gradient will be λt and the 

intercept on the lnN axis will be lnN
0
. This linearizes the graph shown 

in gure 11 producing the graph of gure 12. A linear graph is easier to 

analyse than a curve.

Capacitors also discharge through resistors using the same general 

mathematical relationship as that used for radioactive decay.

Note 

Relationships can never be 

“indirectly proportional” – this 

is a meaningless term since it 

is too vague. Consequently the 

term “proportional” means the 

same as “directly proportional”.

This topic is dealt with in more 

detail and with many further 

examples on the website.
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1.3 Vectors and scalars

  Nature of science
All physical quantities that you will meet on the 

course are classified as being vectors or scalars. 

It is important to know whether any quantity is 

a vector or a scalar since this will affect how the 

quantity is treated mathematically. Although 

the concept of adding forces is an intuitive 

application of vectors that has probably been 

used by sailors for millennia, the analytical 

aspect of it is a recent development. In the 

Philosophiæ Naturalis Principia Mathematica, 

published in 1687, Newton used quantities which 

we now call vectors, but never generalized this to 

deal with the concepts of vectors. At the start of 

the 19th century vectors became an indispensible 

tool for representing three-dimensional space 

and complex numbers. Vectors are now used 

as a matter of course by physicists and 

mathematicians alike.

Understanding
➔ Vector and scalar quantities

➔ Combination and resolution of vectors

  Applications and skills
➔ Solving vector problems graphically and 

algebraically.

Equations

The horizontal and vertical components of vector A:

➔ A
H
= A cos θ

➔ A
V
= A sin θ

Vector and scalar quantities
Scalar quantities are those that have magnitude (or size) but no 

direction. We treat scalar quantities as numbers (albeit with units) and 

use the rules of algebra when dealing with them. Distance and time are 

both scalars, as is speed. The average speed is simply the distance divided 

by the time, so if you travel 80 m in 10 s the speed will always be 8 ms 1. 

There are no surprises. 

Vector quantities are those which have both magnitude and direction. 

We must use vector algebra when dealing with vectors since we 

must take into account direction. The vector equivalent of distance is 

called displacement (i.e., it is a distance in a specied direction). The 

vector equivalent of speed is velocity (i.e., it is the speed in a specied 

direction). Time, as we have seen, is a scalar. Average velocity is dened 

as being displacement divided by time. 

AV

AH

u

A
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Dividing a vector by a scalar is the easiest operation that we need to 

do involving a vector. To continue with the example that we looked at 

with scalars, suppose the displacement was 80 m due north and the time 

was, again, 10 s. The average velocity would be 8 ms 1 due north. So, to 

generalize, when we divide a vector by a scalar we end up with a new 

vector that has the direction of the original one, but which will be of 

magnitude equal to that of the vector divided by that of the scalar.

Commonly used vectors and scalars

Vectors Scalars Comments

force (F) mass (m) F

displacement (s) length/distance (s, d, etc.) displacement used to be called “space” – now that 
means something else!

velocity (v or u) time (t)

momentum (p) volume (V)

acceleration (a) temperature (T)

gravitational eld strength (g) speed (v or u) velocity and speed often have the same symbol

electric eld strength (E) density (ρ) the symbol for density is the Greek “rho” not the letter “p”

magnetic eld strength (B) pressure (p)

area (A) energy/work (W, etc.) the direction of an area is taken as being at right angles to 
the surface

power (P)

current (I) with current having direction you might think that it 
should be a vector but it is not (it is the ratio of two 
scalars, charge and time, so it cannot be a vector). In 
more advanced work you might come across current 

density which is a vector.

resistance (R)

gravitational potential (V
G
)

the subscripts tell us whether it is gravitational or electrical
electric potential (V

E
)

magnetic ux (Φ) ux is often thought as having a direction – it doesn’t!

Representing  vector quantities
A vector quantity is represented by a line with an arrow.

● The direction the arrow points represents the direction of the vector.

● The length of the line represents the magnitude of the vector to a 

chosen scale.

When we are dealing with vectors that act in one dimension it is a 

simple matter to assign one direction as being positive and the opposite 

direction as being negative. Which direction is positive and which 

negative really doesn’t matter as long as you are consistent. So, if one 

force acts upwards on an object and another force acts downwards, it is a 

simple matter to nd the resultant by subtracting one from the other. ▲ Figure 1 Representing a vector.

5.0 N

this vector can represent a force 
of 5.0 N in the given direction
(using a scale of 1 cm representing
1 N, it will be 5 cm long)
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Figure 2 shows an upward tension and downward weight acting on an 

object – the upward line is longer than the downward line since the 

object is not in equilibrium and has an upward resultant.

Adding and subtracting vectors
When adding and subtracting vectors, account has to be taken of their 

direction. This can be done either by a scale drawing (graphically) or 

algebraically.

▲ Figure 3 Two vectors to be added.

V2

V1

▲ Figure 4 Adding the vectors.

V

V2

V1

Scale drawing (graphical) approach
Adding two vectors V

1
 and V

2
 which are not in the same direction can be 

done by forming a parallelogram to scale.

● Make a rough sketch of how the vectors are going to add together to 

give you an idea of how large your scale needs to be in order to ll 

the space available to you. This is a good idea when you are adding 

the vectors mathematically too. 

● Having chosen a suitable scale, draw the scaled lines in the 

direction of V
1
 and V

2
 (so that they form two adjacent sides of the 

parallelogram).

● Complete the parallelogram by drawing in the remaining two sides.

● The blue diagonal represents the resultant vector in both 

magnitude and direction.

Worked example

Two forces of magnitude 4.0 N and 6.0 N act on a 

single point. The forces make an angle of 60° with 

each other. Using a scale diagram, determine the 

resultant force.

Solution

Don’t forget that the vector must have a 

magnitude and a direction; this means that the 

angle is just as important as the size of the force.
4 N

8.7 N
6 N

6 N

resultant

1
7

0

140

130

110
1009080

70
60

50

30
20

1
0

0

1
8

0
1

7
0

16
0

15
0

100 90 80 70
60

40

1
0

36

Scale 10 mm represents 1.0 N

length of resultant = 87 mm so the force = 8.7 N

angle resultant makes with 4 N force = 36°

▲ Figure 2 Two vectors acting on an object.

tension = 20 N upwards

weight = 15 N downwards

resultant = 5 N upwards
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Algebraic approach
Vectors can act at any angle to each other but the most common 

situation that you are going to deal with is when they are at right angles 

to each other. We will deal with this rst.

Adding vector quantities at right angles

Pythagoras’ theorem can be used to calculate a resultant vector when 

two perpendicular vectors are added (or subtracted). Assuming that the 

two vector quantities are horizontal and vertical but the principle is the 

same as long as they are perpendicular. 

Figure 5 shows two perpendicular velocities v
1
 and v

2
; they form a 

parallelogram that is a rectangle.

The magnitude of the resultant velocity = √
______
v 1

2 + v 2
2

● The resultant velocity makes an angle θ to the horizontal given by

 tan θ = (v
1_

v
2
) so that θ = tan 1 ( v

1_

v
2
)

● Notice that the order of adding the two vectors makes no difference 

to the length or the direction of the resultant.

Worked example

A walker walks 4.0 km due west from his starting 

point. He then stops before walking 3.0 km due 

north. At the end of his journey, how far is the 

walker from his starting point?

Solution

resultant = √
______
4  2 + 3  

2 = 5 km

angle θ = tan 1 (3
4) = 36.9°

θ

4 km

3 km

sketch

▲ Figure 5 Adding two perpendicular vectors.

Before we look at adding vectors that are not perpendicular, we need to 

see how to resolve a vector – i.e. split it into two components.

Resolving vectors

We have seen that adding two vectors together produces a resultant 

vector. It is sensible, therefore, to imagine that we could split the 

resultant into the two vectors from which it was formed. In fact this is 

true for any vector – it can be divided into components which, added 

together, make the resultant vector. There is no limit to the number 

of vectors that can be added together and, consequently, there is no 

limit to the number of components that a vector can be divided into. 

However, we most commonly divide a vector into two components 

that are perpendicular to one another. The reason for doing this is that 

perpendicular vectors have no affect on each other as we will see when 

we look at projectiles in Topic 2. 

The force F in gure 6 has been resolved into the horizontal component 

equal to F cos θ and a vertical component equal to Fsinθ. (The 

component opposite to the angle used is always the sinecomponent.)

▲ Figure 6 Resolving a force.

F

θFcos

θFsin

θ

v2

v2

v1

v1

θ
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Worked example

An ice-hockey puck is struck at a constant speed 

of 40 m s 1 at an angle of 60° to the longer side of 

an ice rink. How far will the puck have travelled 

in directions a) parallel and b) perpendicular to 

the long side after 0.5 s?

Solution 

Vx = 40 cos 60° long side of rink

40 ms 1

V
y
=

 4
0

 s
in

 6
0
°

60°

a) Resolving parallel to longer side:

v
x
= v cos 60°

v
x
= 40 cos 60° = 20 m s 1

distance travelled (x) = v
x
t = 20 × 0.5  

= 10 m

b) Resolving parallel to shorter side:

v
x
= v sin 60°

v
y
= 40 cos 60° = 34.6 m s 1

distance travelled (y) = v
y
t = 34.6 × 0.5  

= 17 m

Just to demonstrate that resolving is the reverse 

of adding the components we can use Pythagoras’ 

theorem to add together our two components 

giving:

total speed = √
_________
20  2 + 34.6  2 = 39.96 m s 1

as the value for v
y
 was rounded this gives the 

expected 40 m s 1

Adding vector quantities that are not at right angles 

You are now in a position to add any vectors.

● Resolve each of the vectors in two directions at right angles – this 

will often be horizontally and vertically, but may be parallel and 

perpendicular to a surface.

● Add all the components in one direction to give a single component.

● Add all the components in the perpendicular direction to give a 

second single component.

● Combine the two components using Pythagoras’ theorem, as for two 

vector quantities at right angles.

V
1
 and V

2
 are the vectors to be added.

Each vector is resolved into components in the x and y directions. 

Note that since the x component of V
2
 is to the left it is treated as being 

negative (the y component of each vector is in the same direction . . . so 

upwards is treated as positive).

Total x component V
x
= V

1x
+ V

2x
= V

1 
cos θ

1
V

2 
cos θ

2

Total y component V
y
= V

1y
+ V

2y
= V

1 
sin θ

1
+ V

2 
sin θ

2

Having calculated V
x
 and V

y
 we can nd the resultant by using 

Pythagoras so V =  √
______
V x

2 + V y
2

and the angle θ made with the horizontal =  tan  
–1(V y__

V x
)

V1x = V1 cos    1θ

V2x = V2 cos   2θ

V
1

=
V

1
 s

in
   

 1

V1

V2

θ

1θ

2θ

V
2
y
=

V
2

 s
in

   
 2θ

▲ Figure 7 Finding the resultant 

of two vectors that are not 

perpendicular.
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Worked example

Magnetic elds have strength 200 mT and 150 mT 

respectively. The elds act at 27° to one another as 

shown in the diagram. 

150 mT

200 mT

27°

(not drawn
to scale)

Calculate the resultant magnetic eld strength.

Solution 

The 150 mT eld is horizontal and so has no 

vertical component.

Vertical component of the 200 mT eld =
200 sin 27° = 90.8 mT

This makes the total vertical component of the 

resultant eld.

Horizontal component of the 200 mT eld =
200 cos 27° = 178.2 mT

Total horizontal component of resultant eld =
(150.0 + 178.2) mT = 328.2 mT

Resultant eld strength  √
____________
90.8  2 + 328.2  2 = 340 mT

The resultant eld makes an angle of: 

tan 1 ( 90.8_____
328.2) = 15° with the150 mT eld.

Subtraction of vectors

Subtracting one vector from another is very simple – you just form the 

negative of the vector to be subtracted and add this to the other vector. 

The negative of a vector has the same magnitude but the opposite 

direction. Let’s look at an example to see how this works:

Suppose we wish to nd the difference between two velocities v
1
 and v

2

shown in gure 8.

V2

V1

V1

▲ Figure 8 Positive and negative vectors.

In nding the difference between two values we subtract the rst value 

from the second; so we need v
1
. We then add v

1
 to v

2
 as shown in 

gure 9 to give the red resultant. 

The order of combining the two vectors doesn’t matter as can be seen 

from the two versions in gure 9. In each case the resultant is the same– 

it doesn’t matter where the resultant is positioned as long as it has the 

same length and direction it is the same vector.

V2

V1

V2 − V1

V2

V1

V2 − V1

▲ Figure 9 Subtracting vectors.
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Questions 
1 Express the following units in terms of the SI 

fundamental units.

a) newton (N)

b) watt (W)

c) pascal (Pa)

d) coulomb (C)

e) volt (V)

(5 marks)

2 Express the following numbers to three 

signicant gures.

a) 257.52 

b) 0.002 347

c) 0.1783

d) 7873

e) 1.997

(5 marks)

3 Complete the following calculations and 

express your answers to the most appropriate 

number of signicant gures.

a) 1.34 × 3.2

b)
1.34 × 102
_
2.1 × 103 

c) 1.87 × 102
+ 1.97 × 103

d) (1.97 × 105) × (1.0 × 104)

e) (9.47 × 10 2) × (4.0 × 103)

(5 marks)

4 Use the appropriate metric multiplier instead of 

a power of ten in thefollowing.

a) 1.1 × 104 V   

b) 4.22 × 10 4 m  

c) 8.5 × 1010 W

d) 4.22 × 10 7 m

e) 3.5 × 10 13 C

(5 marks)

5 Write down the order of magnitude of the 

following (you may need to do some research).

a) the length of a human foot

b) the mass of a y

c) the charge on a proton

d) the age of the universe

e) the speed of electromagnetic waves in a 

vacuum

(5 marks)

6 a) Without using a calculator estimate to one 

signicant gure the value of  
2π4.9_
480

. 

b) When a wire is stretched, the area 

under the line of a graph of force against 

extension of the wire gives the elastic 

potential energy stored in the wire. 

Estimate the energy stored in the wire with 

the following characteristic:

0

0

4

2

6

8

10

12

1 2 3 4 5 6 7 8

extension/mm

fo
rc
e
/N

(4 marks)

7 The grid below shows one data point and its 

associated errorbar on a graph. The x-axis is 

not shown. State the y-value of the data point 

together with its absolute and percentage 

uncertainty. 

1.0

2.0

3.0

4.0

5.0

(3 marks)
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8 A ball falls freely from rest with an acceleration g. 

The variation with time t of its displacement s

is given by s = 1
2

gt2. The percentage uncertainty 

in the value of t is ±3% and that in the value of 

g is ±2%. Calculate the percentage uncertainty  

in the value of s

(2 marks)

9 The volume V of a cylinder of height h and 

radius r is given by theexpression V = πr2h. In 

a particular experiment, r is to be determined 

from measurements of V and h. The percentage 

uncertainty in V is ±5% and that in h is ±2%. 

Calculate the percentage uncertainty in r

(3 marks)

10 (IB)

At high pressures, a real gas does not behave 

as an ideal gas. For a certain range of pressures, 

it is suggested that for one mole of a real gas at 

constant temperature the relation between the 

pressure p and volume V is given by the equation

 pV = A + Bp where A and B are constants.

In an experiment, 1 mole of nitrogen gas 

was compressed at a constant temperature of 

150 K. The volume V of the gas was measured 

for different values of the pressure p. A graph 

of the product pV against p is shown in the 

diagram below.

0

10

11

12

13

5 10 15 20

p/ × 106Pa

pV/102Nm

a) Copy the graph and draw a line of best t 

for the data points.

b) Use your graph to determine the values of 

the constants A and B in the equation  

pV = A + Bp

c) p was measured to an accuracy of 5% and 

V was measured to an accuracy of 2%. 

Determine the absolute error in the value  

of the constant A

(6 marks)

11 (IB)

An experiment was carried out to measure the 

extension x of a thread of a spider’s web when 

a load F is applied to it. 

1.0 2.0 3.0 4.0
x/10 2m

5.0 6.0

F/10 2N

0.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
thread breaks

at this point

a) Copy the graph and draw a best-t line for 

the data points.

b) The relationship between F and x is of the 

form

F = kxn

 State and explain the graph you would plot 

in order to determine the value n

c) When a load is applied to a material, it is 

said to be under stress. The magnitude p of 

the stress is given by

p =
F_
A

 where A is the cross-sectional area of the 

sample of the material.

 Use the graph and the data below to deduce 

that the thread used in the experiment has 

a greater breaking stress than steel.

 Breaking stress of steel = 1.0 × 109 N m 2

 Radius of spider web thread = 4.5 × 10 6 m

d) The uncertainty in the measurement of 

the radius of the thread is ±0.1 × 10 6 m. 

Determine the percentage uncertainty in 

the value of the area of the thread.

(9 marks)
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12 A cyclist travels a distance of 1200 m due 

north before going 2000 m due east followed 

by 500 m south-west. Draw a scale diagram to 

calculate the cyclist’s nal displacement from 

her initial position.

(4 marks)

13 The diagram shows three forces P, Q, and R in 

equilibrium. P acts horizontally and Q vertically.

R
P

Q

 When P = 5.0 N and Q = 3.0 N, calculate the 

magnitude and direction of R

(3 marks)

14 A boat, starting on one bank of a river, heads 

due south with a speed of 1.5 m s 1. The river 

ows due east at 0.8 m s 1

a) Calculate the resultant velocity of the boat 

relative to the bank of the river.

b) The river is 50 m wide. Calculate the 

displacement from its initial position when 

the boat reaches the opposite bank.

(7 marks)

15 A car of mass 850 kg rests on a slope at 25°

to the horizontal. Calculate the magnitude of 

the component of the car’s weight which acts 

parallel to the slope.

(3 marks)
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E N D - O F -T O P I C  Q U E S T I O N S

© Oxford University Press 2014: this may be reproduced for class use solely for the purchaser’s institute

Solutions for Topic 1 – Measurements and uncertainties
1.	 a)	 kg ms–2	 d)	 A s

b)	 kg m2s–3	 e)	 kg m2s–1A–1

c)	 kg m–1s–2

2.	 a)	 258	 	 d)	 7870

b)	 0.00235	 e)	 2.00

c)	 0.178	

3.	 a)	 4.3		  d)	 2.0 × 109

b)	 6.4 × 10–2	 e)	 3.8 × 102

c)	 2.16 × 103

4.	 a)	 11 kV	 d)	 0.422 μm or 422 nm

b)	 0.422 mm or 422 μm	 e)	 0.35 pC or 350 fC

c)	 85 GW

5.	 a)	 10–1 m (a few 10s of cm)

b)	 10–4 – 10–2 kg (flies come in many different shapes and sizes!)

c)	 10–19 C (1.6 × 10–19 C)

d)	 1010 year (13.7 billion years)

e)	 108 ms–1 (3.0 × 108 ms–1)

6.	 a)	​  2 × 3 × 5 _ 
500

 ​  = ​  6 _ 
100

 ​ = 0.06

b)	 between 70 and 74 mJ

7.	 3.0 ± 0.4; ±13.3% (or rounding up ±14%)

8.	​  ∆s _ s ​  = ​ 
∆g

 _ g ​  + 2 ​ ∆t _ 
t
 ​  = 0.02 + (2 × 0.03) = 0.08 = ±8% 

9.	​  ∆r _ r ​  = ​ 1 _ 
2
 ​ ​(​ ∆h _ 

h
 ​  + ​ ∆V _ 

V
 ​ )​ = 0.5 × 0.02 × 0.05 = 0.035 = ±4%

10.	a)	 check line of best fit reasonable

b)	 A = y-intercept; B = gradient

	� c)	 use difference between steepest and shallowest gradients

11.	a)	 check line of best fit reasonable

b)	 log F = n log x + log k; plot log F against log x and find gradient of graph which is n

	 c)	 p = ​  8.5 × ​10 ​–2​  __  
π × 4.5 × 1​0 ​–6​ 

 ​ = 1.3 × 1​0 ​9​ N​m ​–2​

	 d)	​  ∆A _ 
A

 ​  = 2 ​ ∆r _ r ​  = 2 × ​ 0.1 × 1​0 ​–6​ _ 
4.5 × 1​0 ​–6​

 ​ = 0.04 = ±4%

12.	(1850 ± 50) m at angle of N (60 ± 5) °E from scale starting point

13.	magnitude = ​√
______

 ​5 ​2​ + ​3 ​2​ ​ = 5.8 N

	� tan θ = ​ 5 _ 
3
 ​; θ = 31° to horizontal

14.	a)	 magnitude of velocity = ​√
_________

  1.​5 ​2​ + 0.​8 ​2​ ​ = 1.7 m ​s ​–1​

		�  tan θ = ​ 0.8 _ 
1.5

 ​; θ = 28° with original direction

	 b)	 s cos 28 = 50; displacement s = 57 m

15.	component parallel to slope = mg sin θ = 850 × 9.8 sin 25 = 3500 N

839213_Solutions_Ch01.indd   1 12/17/14   4:10 PM
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Te ream o psics – rane o manitudes o 
quantities in our unierse

ORDERS Of MAgNITUDE – 

INClUDINg ThEIR RATIOS
Physics seeks to explain nothing less than the 

Universe itself. In attempting to do this, the 

range of the magnitudes of various quantities 

will be huge.

If the numbers involved are going to mean 

anything, it is important to get some feel 

for their relative sizes. To avoid ‘getting lost’ 

among the numbers it is helpful to state them 

to the nearest order of magnitude or power 

of ten. The numbers are just rounded up or 

down as appropriate.

Comparisons can then be easily made because 

working out the ratio between two powers of 

ten is just a matter of adding or subtracting 

whole numbers. The diameter of an atom, 

10 10 m, does not sound that much larger 

than the diameter of a proton in its nucleus, 

10 15 m, but the ratio between them is 105 or 

100,000 times bigger. This is the same ratio as 

between the size of a railway station (order 

of magnitude 102 m) and the diameter of the 

Earth (order of magnitude 107 m).

electrons

protons

Carbon atom

railway

station

Earth

For example, you would probably feel very 

pleased with yourself if you designed a new, 

environmentally friendly source of energy 

that could produce 2.03 × 103 J from 0.72 kg 

of natural produce. But the meaning of these 

numbers is not clear – is this a lot or is it a 

little? In terms of orders of magnitudes, this 

new source produces 103 joules per kilogram 

of produce. This does not compare terribly 

well with the 105 joules provided by a slice of 

bread or the 108 joules released per kilogram 

of petrol.

You do NOT need to memorize all of the 

values shown in the tables, but you should 

try and develop a familiarity with them. 

RANgE Of MASSES
Mass / kg

1052

1048

1044

1040

1036

1032

1028

1024

1020

1016

1012

108

104

100

10 4

10 8

10 16

10 12

10 20

10 24

10 28

10 32

total mass of observable 
Universe

mass of local galaxy 
(Milky Way)

mass of Sun

mass of Earth

total mass of oceans
total mass of atmosphere

laden oil supertanker

elephant
human

mouse

grain of sand
blood corpuscle

bacterium

haemoglobin molecule
proton

electron

RANgE Of TIMES
Time / s

1018

1020

1016

1014

1012

1010

108

106

104

102

100

10 2

10 4

10 6

10 8

10 10

10 12

10 16

10 14

10 18

10 20

10 22

10 24

age of the Universe

age of the Earth

age of species – Homo 
sapiens

typical human lifespan

1 year

1 day

heartbeat

period of high-frequency 
sound

passage of light across 
a room

vibration of an ion in a solid

period of visible light

passage of light across 
an atom

passage of light across 
a nucleus

RANgE Of lENgThS
Size / m

1026

1024

1022

1020

1018

1016

1014

1012

1010

108

106

104

102

100

10 2

10 4

10 8

10 6

10 10

10 12

10 14

10 16

radius of observable Universe

radius of local galaxy (Mily ay

disance o neares sar

disance from ar o Sun

disance from ar o Moon

radius of e ar
deees ar of e
ocean / iges mounain
alles building

leng of ngernail
icness of iece of aer
uman blood coruscle

aveleng of lig

diameer of ydrogen aom

aveleng of gamma ray

diameer of roon

RANgE Of ENERgIES

Energy / J

1034

1044

1030

1026

1022

1018

1014

1010

106

102

10 2

10 6

10 10

10 18

10 14

10 22

10 26

energy radiated by Sun in 1 second

energy released in a supernova

energy released by annihilation of
1 g of atter

energy released in an earthuae

energy in a lightning discharge

energy needed to charge a car
battery

energy in the beat of a y’s ing

inetic energy of a tennis ball
during gae

energy needed to reove electron 
fro the surface of a etal
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DERIvED UNITS
Having xed the fundamental units, all other measurements 

can be expressed as different combinations of the fundamental 

units. In other words, all the other units are derived units. For 

example, the fundamental list of units does not contain a unit 

for the measurement of speed. The denition of speed can be 

used to work out the derived unit. 

Since speed =
distance_

time

Units of speed =
units of distance__

units of time

=
metres_
seconds

 (pronounced ‘metres per second’)

=
m_
s

= m s 1

Of the many ways of writing this unit, the last way (m s 1) is the 

best. 

Sometimes particular combinations of fundamental units 

are so common that they are given a new derived name. For 

example, the unit of force is a derived unit – it turns out to be 

kg m s 2. This unit is given a new name the newton (N) so that 

1N = 1 kg m s 2. 

The great thing about SI is that, so long as the numbers that are 

substituted into an equation are in SI units, then the answer 

will also come out in SI units. You can always ‘play safe’ by 

converting all the numbers into proper SI units. Sometimes, 

however, this would be a waste of time.

There are some situations where the use of SI becomes 

awkward. In astronomy, for example, the distances involved 

are so large that the SI unit (the metre) always involves large 

orders of magnitudes. In these cases, the use of a different 

(but non SI) unit is very common. Astronomers can use the 

astronomical unit (AU), the light-year (ly) or the parsec (pc) 

as appropriate. Whatever the unit, the conversion to SI units is 

simple arithmetic.

1 AU = 1.5 × 1011 m

1 ly = 9.5 × 1015 m

1 pc = 3.1 × 1016 m

There are also some units (for example the hour) which are so 

common that they are often used even though they do not form 

part of SI. Once again, before these numbers are substituted 

into equations they need to be converted. Some common unit 

conversions are given on page 3 of the IB data booklet.

The table below lists the SI derived units that you will meet.

SI derived unit SI base unit Alternative SI unit

newton (N) kg m s 2

pascal (Pa) kg m 1 s 2 N m 2

hertz (Hz) s 1

joule (J) kg m2 s 2 N m 

watt (W) kg m2 s 3 J s 1

coulomb (C) A s 

volt (V) kg m2 s 3 A 1 WA 1

ohm (Ω) kg m2 s 3 A 2 VA 1

weber (Wb) kg m2 s 2 A 1 V s

tesla (T) kg s 2 A 1 Wb m 2

becquerel (Bq) s 1

PREfIxES
To avoid the repeated use of scientic notation, an alternative is to use one of the list of agreed prexes given on page 2 in the IB data 

booklet. These can be very useful but they can also lead to errors in calculations. It is very easy to forget to include the conversion factor.

For example, 1 kW = 1000 W. 1 mW = 10 3 W (in other words, 1W____
1000

)

Te SI sstem o undamenta and deried units

fUNDAMENTAl UNITS
Any measurement and every quantity can be thought of as 

being made up of two important parts:

1. the number and 

2. the units.

Without both parts, the measurement does not make sense. 

For example a person’s age might be quoted as ‘seventeen’ 

but without the ‘years’ the situation is not clear. Are they 

17 minutes, 17 months or 17 years old? In this case you would 

know if you saw them, but a statement like 

length = 4.2 

actually says nothing. Having said this, it is really surprising to 

see the number of candidates who forget to include the units in 

their answers to examination questions.

In order for the units to be understood, they need to be dened. 

There are many possible systems of measurement that have 

been developed. In science we use the International System of 

units (SI). In SI, the fundamental or base units are as follows

Quantity SI unit SI symbol

Mass kilogram kg

Length metre m

Time second s

Electric current ampere A

Amount of substance mole mol

Temperature kelvin K

(Luminous intensity    candela    cd)

You do not need to know the precise denitions of any of these 

units in order to use them properly.
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Estimation

ORDERS Of MAgNITUDE

It is important to develop a ‘feeling’ for some of the numbers 

that you use. When using a calculator, it is very easy to make 

a simple mistake (eg by entering the data incorrectly). A good 

way of checking the answer is to rst make an estimate before 

resorting to the calculator. The multiple-choice paper (paper 1) 

does not allow the use of calculators.

Approximate values for each of the fundamental SI units are 

given below.

1 kg A packet of sugar, 1 litre of water. A person would be 

about 50 kg or more

1 m Distance between one’s hands with arms outstretched

1 s Duration of a heart beat (when resting – it can easily 

double with exercise)

1 amp Current owing from the mains electricity when a 

computer is connected. The maximum current to a 

domestic device would be about 10 A or so

1 kelvin 1K is a very low temperature. Water freezes at 273 K 

and boils at 373 K. Room temperature is about 300 K

1 mol 12 g of carbon 12. About the number of atoms of 

carbon in the ‘lead’ of a pencil

The same process can happen with some of the derived units.

1 m s 1 Walking speed. A car moving at 30 m s 1 would be fast 

1 m s 2 Quite a slow acceleration. The acceleration of gravity 

is 10 m s 2

1 N A small force – about the weight of an apple 

1 V Batteries generally range from a few volts up to 20 or 

so, the mains is several hundred volts 

1 Pa A very small pressure. Atmospheric pressure is about 

105 Pa

1 J A very small amount of energy – the work done 

lifting an apple off the ground 

POSSIblE REASONAblE ASSUMPTIONS

Everyday situations are very complex. In physics we often simplify a problem by making simple assumptions. Even if we know 

these assumptions are not absolutely true they allow us to gain an understanding of what is going on. At the end of the calculation 

it is often possible to go back and work out what would happen if our assumption turned out not to be true.

The table below lists some common assumptions. Be careful not to assume too much! Additionally we often have to assume that 

some quantity is constant even if we know that in reality it is varying slightly all the time. 

Assumption Example 

Object treated as point particle Mechanics: Linear motion and translational equilibrium

Friction is negligible Many mechanics situations – but you need to be very careful

No thermal energy (“heat”) loss Almost all thermal situations 

Mass of connecting string, etc. is negligible Many mechanics situations 

Resistance of ammeter is zero Circuits 

Resistance of voltmeter is innite Circuits 

Internal resistance of battery is zero Circuits 

Material obeys Ohm’s law Circuits 

Machine 100% efcient Many situations 

Gas is ideal Thermodynamics 

Collision is elastic Only gas molecules have perfectly elastic collisions

Object radiates as a perfect black body Thermal equilibrium, e.g. planets

SCIENTIfIC NOTATION

Numbers that are too big or too small for decimals are often 

written in scientic notation:

a × 10b

where a is a number between 1 and 10 and b is an integer.

e.g. 153.2 = 1.532 × 102; 0.00872 = 8.72 × 10 3

SIgNIfICANT fIgURES

Any experimental measurement should be quoted with its 

uncertainty. This indicates the possible range of values for 

the quantity being measured. At the same time, the number 

of signicant gures used will act as a guide to the amount 

of uncertainty. For example, a measurement of mass which 

is quoted as 23.456 g implies an uncertainty of ± 0.001 g 

(it has ve signicant gures), whereas one of 23.5 g implies 

an uncertainty of ± 0.1 g (it has three signicant gures).

A simple rule for calculations (multiplication or division) is to 

quote the answer to the same number of signicant digits as 

the LEAST precise value that is used.

For a more complete analysis of how to deal with uncertainties 

in calculated results, see page 5.
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Uncertainties and error in eperimenta measurement

ERRORS – RANDOM AND SySTEMATIC (PRECISION
AND ACCURACy)
An experimental error just means that there is a difference 

between the recorded value and the ‘perfect’ or ‘correct’ value. 

Errors can be categorized as random or systematic. 

Repeating readings does not reduce systematic errors.

Sources of random errors include

• The readability of the instrument.

• The observer being less than perfect.

• The effects of a change in the surroundings.

Sources of systematic errors include

• An instrument with zero error. To correct for zero error the 

value should be subtracted from every reading.

• An instrument being wrongly calibrated

• The observer being less than perfect in the same way every 

measurement.

An accurate experiment is one that has a small systematic 

error, whereas a precise experiment is one that has a small 

random error. 

value
measured 
value

measured
value

(a) (b)
value value

probability
that result has a

certain value

Two examples illustrating the nature of experimental results: 

(a) an accurate experiment of low precision 

(b) a less accurate but more precise experiment.

Systematic and random errors can often be recognized from a 

graph of the results.

q
u

a
n

ti
ty

 A

quantity B

perfect results
random error
systematic error

Perfect results, random and systematic errors of two 

proportional quantities.

SIgNIfICANT fIgURES IN UNCERTAINTIES
In order to be cautious when quoting uncertainties, nal values 

from calculations are often rounded up to one signicant 

gure, e.g. a calculation that nds the value of a force to 

be 4.264 N with an uncertainty of ± 0.362 N is quoted as 

4.3 ± 0.4 N. This can be unnecessarily pessimistic and it is also 

acceptable to express uncertainties to two signicant gures. 

For example, the charge on an electron is 1.602176565 ×10 19 C

± 0.000000035 ×10 19 C. In data booklets this is sometimes 

expressed as 1.602176565(35) × 10 19 C.

gRAPhICAl REPRESENTATION Of UNCERTAINTy
In many situations the best method of presenting and 

analysing data is to use a graph. If this is the case, a neat way 

of representing the uncertainties is to use error bars. The 

graphs below explains their use.

Since the error bar represents the uncertainty range, the ‘best-

t’ line of the graph should pass through ALL of the rectangles 

created by the error bars.
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quantity B
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quantity D

The best t line is 

included by all the error 

bars in the upper two 

graphs. This is not true in 

the lower graph.
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 E

quantity F

mistake

assumed

ESTIMATINg ThE UNCERTAINTy RANgE
An uncertainty range applies to any 

experimental value. The idea is that, 

instead of just giving one value that 

implies perfection, we give the likely 

range for the measurement. 

1. Estimating from rst principles

All measurement involves a readability 

error. If we use a measuring cylinder to 

nd the volume of a liquid, we might 

think that the best estimate is 73 cm3, 

but we know that it is not exactly this 

value (73.00000000000 cm3).

Uncertainty range is ± 5 cm3. We say 

volume = 73 ± 5 cm3. 

Normally the uncertainty range due to 

readability is estimated as below. 

Device Example Uncertainty 

Analogue 

scale

Rulers, meters with 

moving pointers

± (half the smallest  

scale division)

Digital scale Top-pan balances,  

digital meters

± (the smallest scale  

division)

2. Estimating uncertainty range from several repeated 

measurements

If the time taken for a trolley to go down a slope is measured ve 

times, the readings in seconds might be 2.01, 1.82, 1.97, 2.16 and 

1.94. The average of these ve readings is 1.98 s. The deviation of 

the largest and smallest readings can be calculated (2.16  1.98 

= 0.18; 1.98  1.82 = 0.16). The largest value is taken as the 

uncertainty range. In this example the time is 1.98 s ± 0.18 s. It 

would also be appropriate to quote this as 2.0 ± 0.2 s.

100
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30

40

50

60

70

90

80

cm
3
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Uncertainties in cacuated resuts

MAThEMATICAl REPRESENTATION Of UNCERTAINTIES
For example if the mass of a block was measured as 10 ± 1 g 

and the volume was measured as 5.0 ± 0.2 cm3, then the full 

calculations for the density would be as follows.

Best value for density = mass______
volume

= 10
5

= 2.0 g cm 3

The largest possible value of density = 11___
4.8

= 2.292 g cm 3

The smallest possible value of density = 9___
5.2

= 1.731 g cm 3

Rounding these values gives density = 2.0 ± 0.3 g cm 3

We can express this uncertainty in one of three ways – using 

absolute  fractional or percentage uncertainties

If a quantity p is measured then the absolute uncertainty would 

be expressed as ±∆p

Then the fractional uncertainty is

±∆p_
p , 

which makes the percentage uncertainty

±∆p_
p × 100%.

In the example above, the fractional uncertainty of the density is 

±0.15 or ±15%. 

Thus equivalent ways of expressing this error are 

density = 2.0 ± 0.3 g cm 3

OR density = 2.0 g cm 3 ± 15%

Working out the uncertainty range is very time consuming. 

There are some mathematical ‘short-cuts’ that can be used. 

These are introduced in the boxes below.

MUlTIPlICATION, DIvISION OR POwERS
Whenever two or more quantities are multiplied or divided 

and they each have uncertainties, the overall uncertainty 

is approximately equal to the addition of the percentage

(fractional) uncertainties.

Using the same numbers from above,

∆m = ± 1 g

∆m_
m = ± ( 1 g_

10 g ) = ± 0.1 = ± 10%

∆V = ± 0.2 cm3

∆V_
V

= ± (0.2 cm3
_
5 cm3 ) = ± 0.04 = ± 4%

The total % uncertainty in the result = ± (10 + 4)%  

= ± 14 % 

14% of 2.0 g cm 3 = 0.28 g cm 3 ≈ 0.3 g cm 3

So density = 2.0 ± 0.3 g cm 3 as before.

In symbols, if y = ab_c

Then 
∆y_
y = ∆a_

a + ∆b_
b

+ ∆c_
c [note this is ALWAYS added] 

Power relationships are just a special case of this law.

If y = an

Then 
∆y

y = |n ∆a_
a | (always positive)

For example if a cube is measured to be 4.0 ± 0.1 cm in length 

along each side, then

% Uncertainty in length = ± 0.1_
4.0

= ± 2.5 %

Volume = (length)3 = (4.0)3 = 64 cm3

% Uncertainty in [volume] = % uncertainty in [(length)3]  

= 3 × (% uncertainty in [length])

= 3 × (± 2.5 %)  

= ± 7.5 %

Absolute uncertainty = 7.5% of 64 cm3

= 4.8 cm3 ≈ 5 cm3

Thus volume of cube = 64 ± 5 cm3

OThER MAThEMATICAl OPERATIONS
If the calculation involves mathematical operations other than 

multiplication, division or raising to a power, then one has to 

nd the highest and lowest possible values.

Addition or sutraction 

Whenever two or more quantities are added or subtracted and 

they each have uncertainties, the overall uncertainty is equal to 

the addition of the absolute uncertainties.

In symbols

If y = a ± b

∆y = ∆a + ∆b (note ALWAYS added)

uncertainty of thickness in a pipe wall

external radius of pipe 

= 6.1cm ± 0.1cm (≃ 2%)

internal radius of pipe 

= 5.3cm ± 0.1cm (≃ 2%)

thickness of pipe wall = 6.1  5.3cm

= 0.8cm

uncertainty in thickness = ±(0.1 + 0.1)cm

= 0.2cm 

= ±25%

Oter unctions

There are no ‘short-cuts’ possible. Find the highest and lowest 

values.

e.g. uncertainty of sin θ if θ = 60° ± 5°

s
in

 θ

0.82

0.87

0.91

1

55 60 65 θ

if θ = 60° ± 5°

best value to sin θ = 0.87

max. sin θ = 0.91

min. sin θ = 0.82

∴ sin θ = 0.87 ± 0.05

worst value used
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Uncertainties in raps

ERROR bARS
Plotting a graph allows one to visualize all the readings at 

one time. Ideally all of the points should be plotted with 

their error bars. In principle, the size of the error bar could 

well be different for every single point and so they should be 

individually worked out. 

A full analysis in order to determine the uncertainties in the 

gradient of a best straight-line graph should always make 

use of the error bars for all of the data points.

In practice, it would often take too much time to add all the 

correct error bars, so some (or all) of the following short-cuts 

could be considered.

• Rather than working out error bars for each point – use the 

worst value and assume that all of the other error bars are 

the same.

• Only plot the error bar for the ‘worst’ point, i.e. the point 

that is furthest from the line of best t. If the line of best t 

is within the limits of this error bar, then it will probably be 

within the limits of all the error bars.

• Only plot the error bars for the rst and the last points. 

These are often the most important points when 

considering the uncertainty ranges calculated for the 

gradient or the intercept (see right).

• Only include the error bars for the axis that has the worst 

uncertainty. 

UNCERTAINTy IN INTERCEPTS
If the intercept of the graph has been used to calculate a 

quantity, then the uncertainties of the points will give rise 

to an uncertainty in the intercept. Using the steepest and the 

shallowest lines possible (i.e. the lines that are still consistent 

with the error bars) we can obtain the uncertainty in the 

result. This process is represented below.

q
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n

ti
ty

a

quantity b

maximum value 

of intercept

minimum value

of intercept

best value

for intercept

UNCERTAINTy IN SlOPES
If the gradient of the graph has been used to calculate a 

quantity, then the uncertainties of the points will give rise 

to an uncertainty in the gradient. Using the steepest and the 

shallowest lines possible (i.e. the lines that are still consistent 

with the error bars) the uncertainty range for the gradient is 

obtained. This process is represented below.

shallowest 

gradient
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steepest gradient

best t line
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quantity b
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vectors and scaars

DIffERENCE bETwEEN vECTORS AND SCAlARS

If you measure any quantity, it must have a number AND a 

unit. Together they express the magnitude of the quantity. 

Some quantities also have a direction associated with them. A 

quantity that has magnitude and direction is called a vector

quantity whereas one that has only magnitude is called a 

scalar quantity. For example, all forces are vectors. 

The table lists some common quantities. The rst two quantities 

in the table are linked to one another by their denitions (see 

page 9). All the others are in no particular order.

Vectors Scalars

Displacement  Distance

Velocity  Speed

Acceleration Mass

Force Energy (all forms)

Momentum Temperature

Electric eld strength Potential or potential 

difference

Magnetic eld strength Density

Gravitational eld strength Area 

Although the vectors used in many of the given examples are 

forces, the techniques can be applied to all vectors. 

REPRESENTINg vECTORS

In most books a bold letter is used to represent a vector 

whereas a normal letter represents a scalar. For example F

would be used to represent a force in magnitude AND 

direction. The list below shows some other recognized methods.

F , F or  F

Vectors are best shown in 

diagrams using arrows:

• the relative magnitudes 

of the vectors involved 

are shown by the relative 

length of the arrows

• the direction of the 

vectors is shown by the 

direction of the arrows.
weight

normal
reaction

pull

friction

ADDITION / SUbTRACTION Of vECTORS

If we have a 3 N and a 4 N force, the overall force (resultant 

force) can be 

anything between 

1 N and 7 N 

depending on 

the directions 

involved.

The way to take 

the directions 

into account 

is to do a scale 

diagram and use 

the parallelogram 

law of vectors. 

This process is the same as 

adding vectors in turn – the 

‘tail’ of one vector is drawn 

starting from the head of 

the previous vector.

=

=

=

=

3 N

4 N

4 N

3 N

7 N

5 N

4 N

3 N 3 N

3 N 4 N
1 N

COMPONENTS Of vECTORS

It is also possible to ‘split’ one vector into two (or more) vectors. 

This process is called resolving and the vectors that we get are 

called the components of the original vector. This can be a very 

useful way of analysing a situation if we choose to resolve all the 

vectors into two directions that are at right angles to one another. 

F F
vertical

F
horizontal

F

Splitting a vector into components

These ‘mutually perpendicular’ directions are totally 

independent of each other and can be analysed separately. If 

appropriate, both directions can then be combined at the end 

to work out the nal resultant vector.

forces

components

Push

Surface

force

Weight

W

PV

PH
SH

SV

Pushing a block along a rough surface

TRIgONOMETRy

Vector problems can always be solved using scale diagrams, 

but this can be very time consuming. The mathematics 

of trigonometry often makes it much easier to use the 

mathematical functions of sine or cosine. This is particularly 

appropriate when resolving. The diagram below shows how to 

calculate the values of either of these components. 

A
v
=

A
s

in
 θ

Av

A

AH

AH= Acos θ

θ

See page 14 for an example.

a

b

a + b

Parallelogram of vectors
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3. A stone is dropped down a well and hits the water 2.0 s after 

it is released. Using the equation d = 1
2
g t2 and taking  

g = 9.81 m s 2, a calculator yields a value for the depth d of 

the well as 19.62 m. If the time is measured to ±0.1 s then 

the best estimate of the absolute error in d is

A. ±0.1 m C. ±1.0 m

B. ±0.2 m D. ±2.0 m

4. In order to determine the density of a certain type of wood, 

the following measurements were made on a cube of the 

wood.

Mass = 493 g

Length of each side = 9.3 cm

The percentage uncertainty in the measurement of mass is 

±0.5% and the percentage uncertainty in the measurement 

of length is ±1.0%.

The best estimate for the uncertainty in the density is

A. ±0.5% C. ±3.0%

B. ±1.5% D. ±3.5%

5. Astronauts wish to determine the gravitational acceleration 

on Planet X by dropping stones from an overhanging cliff. 

Using a steel tape measure they measure the height of the 

cliff as s = 7.64 m ± 0.01 m. They then drop three similar 

stones from the cliff, timing each fall using a hand-held 

electronic stopwatch which displays readings to one-

hundredth of a second. The recorded times for three drops are 

2.46 s, 2.31 s and 2.40 s.

a) Explain why the time readings vary by more  

than a tenth of a second, although the stopwatch  

gives readings to one hundredth of a second. [1]

b) Obtain the average time t to fall, and write it in  

the form (value ± uncertainty), to the appropriate  

number of signicant digits. [1]

c) The astronauts then determine the gravitational 

acceleration a
g
 on the planet using the formula a

g
=

2s

t2
. 

Calculate a
g
 from the values of s and t, and determine the 

uncertainty in the calculated value. Express the result in 

the form  

a
g
= (value ± uncertainty),  

to the appropriate number of signicant digits. [3]

HL

6. This question is about nding the relationship between the 

forces between magnets and their separations.

In an experiment, two magnets were placed with their North-

seeking poles facing one another. The force of repulsion, f, 

and the separation of the magnets, d, were measured and the 

results are shown in the table below.

Separation d/m Force of repulsion f/N

0.04 4.00

0.05 1.98

0.07 0.74

0.09 0.32

a) Plot a graph of log (force) against log (distance). [3]

b) The law relating the force to the separation is  

of the form

f = kdn

(i) Use the graph to nd the value of n. [2]

(ii) Calculate a value for k, giving its units. [3]

1. An object is rolled from rest down an inclined plane. The 

distance travelled by the object was measured at seven different 

times. A graph was then constructed of the distance travelled 

against the (time taken)2 as shown below.
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a) (i) What quantity is given by the gradient of such  

a graph? [2]

(ii) Explain why the graph suggests that the collected 

data is valid but includes a systematic error. [2]

(iii) Do these results suggest that distance is proportional 

to (time taken)2? Explain your answer. [2]

(iv) Making allowance for the systematic error, calculate 

the acceleration of the object. [2]

b) The following graph shows that same data after the uncertainty 

ranges have been calculated and drawn as error bars.
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Add two lines to show the range of the possible 

acceptable values for the gradient of the graph. [2]

2. The lengths of the sides of a rectangular plate are measured, and 

the diagram shows the measured values with their uncertainties.

50 ± 0.5 mm

25 ± 0.5 mm

Which one of the following would be the best estimate of the 

percentage uncertainty in the calculated area of the plate?

A. ± 0.02% C. ± 3%

B. ± 1% D. ± 5%

Ib Questions – measurement and uncertainties
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