# Incoming Magnet Precalculus / Functions Summer Review Assignment 

Students,
This assignment should serve as a review of the Algebra and Geometry skills necessary for success in Magnet Precalculus or Magnet Functions. Our hope is that this review will keep your mind mathematically active during the summer and prepare you for the fun and challenging year ahead. Because of the diverse backgrounds of the students coming into the magnet program some of the problems may be more challenging than others. We expect that you will be able to do any of these problems. This assignment will not be collected or graded, however any of these problems may turn up on tests and quizzes. Don't do the problems that feel like "busy-work" to you but focus on those that you find more difficult. Enjoy your summer. See you in August ready to learn!!!
Directions:

- Answer questions on a separate sheet of paper.
- Show all work neatly and well organized.
- Carefully and neatly label your problems and solutions, including the original problem.
- Give exact answers and, (except for section IX andXVIII) DO NOT USE A CALCULATOR.
I. Convert from one kind of units to another:

1) $159 \mathrm{~cm}=$ $\qquad$ mm
2) $3.2 \mathrm{~m}=$ $\qquad$ km
3) 18 inches $=$ $\qquad$ feet
4) $\qquad$ feet $=4$ miles
5) 3.6 yards $=$ $\qquad$ feet
II. Find the perimeter and area of each of the following figures.
6) 


2)

III. For each of the following circles:

1. If the radius is 5.2 cm , find the area and the circumference.
2. If the circumference $=6 \pi \mathrm{~m}$, find the radius and the area.
3. If the area $=14 \pi \mathrm{~cm}^{2}$, find the circumference and the diameter.
IV. Simplify.
1) $\sqrt{8}$
2) $4 \sqrt{27}$
3) $\frac{6}{\sqrt{3}}$
4) $\sqrt{16 a^{3} b^{6}}$
5) $\sqrt{8}+\sqrt{18}-\sqrt{32}$
6) $\sqrt{21} \cdot \sqrt{14}$
V. Solve for $x$ in each of the following equations:
7) $\frac{5 x}{8}=\frac{6 x-7}{3}$
8) $\frac{6}{x+3}=\frac{4}{2 x-7}$
9) $\frac{2}{3} x+4=6$
10) $\frac{3}{x+1}=\frac{x}{4}$
11) $2(x+1)-3=4$
12) $\frac{1}{5} x-3=2$
VI. Give the equation and draw a sketch of a line:
1. with a slope of 0 and a $y$-intercept of $(0,12)$.
2. that contains the points $\mathrm{A}(-2,3)$ and $\mathrm{B}(-6,-5)$.
3. with a slope of -3 and a $y$-intercept of $(0,5)$.
4. perpendicular to $3 x-4 y=2$ and passing through $(1,1)$.
VII. Multiply the polynomials and expand.
1) $(x-9)(x+8)$
2) $(x-8)^{2}$
3) $(x+2)^{3}$
4) $(2 x-1)(x+5)$
5) $(x+y-2)^{2}$
6) $\left(x^{2}-3\right)\left(-4+x-3 x^{2}\right)$
VIII. Solve the following equations for $x$ by factoring:
7) $x^{2}-16 x+64=0$
8) $2 x^{2}+9 x-5=0$
9) $4 x^{2}-36 x+72=0$
10) $15 x^{2}+11 x-12=0$
11) $x^{3}-64=0$
12) $x^{4}-13 x^{2}+36=0$
IX. Solve the following equations for $x$ by using the quadratic formula (remember to give all solutions in two ways: exactly, using radicals and an approximation using your calculator):
13) $x^{2}+3 x-5=0$
14) $-2 x^{2}-4 x+7=0$
X. Solve the following systems of equations:
15) $5 x+4 y=6$
16) 

$-2 x-3 y=-1$
2) $\begin{aligned} & -2 x+y=8 \\ & y=-3 x-2\end{aligned}$

$$
80 x+=16-4 y
$$

3) $-30 x+6=\frac{3 y}{2}$
4) $\begin{aligned} & \frac{1}{2 x}+\frac{15}{y}=10 \\ & \frac{2}{x}-\frac{5}{y}=14\end{aligned}$
XI. For each of the following functions:
a) Graph the function. Remember: NO CALCULATORS
b) State the domain of the function using interval notation. Example: $[-3, \infty)$ or $(-2,7)$
c) State the range of the function using interval notation
5) $f(x)=-\frac{3}{4} x+4$
6) $f(x)=3 x+2$
7) $f(x)=(x-2)^{2}+1$
8) $f(x)=x^{2}+6 x+1$
9) $f(x)=\sqrt{x-4}$
10) $f(x)=|x|$
11) $f(x)=|x+2|$
12) $f(x)=|x|+3$
13) $f(x)=\frac{3}{x+5}$
XII. For each of the following inequalities, sketch the set of points in the $x y$-plane that satisfies the inequality:
14) $y \geq 2 x+1$
15) $y<-3 x+4$
16) $y \leq 4$
17) $x>-2$
18) $y<|x|$
19) $y>x^{2}$
XIII. Simplify the following expressions:
20) $\left(39 a^{4}-4 a^{3}+2 a^{2}-a-7\right)-\left(10 a^{4}+3 a^{3}-2 a^{2}-a+8\right)$
21) $\frac{64 x^{3} y^{2}-16 x^{2} y^{3}+32 x^{5} y^{5}}{8 x^{2} y^{2}}$
22) $\left(15 a^{4} b^{2} c\right)^{0}$
23) $-3 x y^{3}(x-2 y)$
24) $\left(8 a^{3} b^{2}\right)\left(2 a^{-4} b^{-5}\right)$
25) $\left(3 x^{2}+x-1\right)(2 x-3)$
26) $\frac{10 a^{3} b^{2} c^{7}}{5 a^{5} b c^{7}}$
27) $\frac{3 x^{3} y^{2}}{6 x^{-2} y^{5}}$
28) $\left(-3 x^{2} y^{3} z\right)^{3}$
29) $\frac{\frac{2}{5}+\frac{3}{14}}{\frac{6}{7}-\frac{3}{5}}$
30) $\frac{\frac{1}{x+1}+\frac{1}{x-1}}{\frac{x}{x^{2}-1}}$
XIV. Solve for $x$ in each of the following equations:
31) $\sqrt{2 x}=8$
32) $\sqrt{3 x-5}=\sqrt{2 x+4}$
33) $2-\sqrt{x}=4$
34) $\sqrt{3 x}-4=2$
XV.
1. Let parallel lines $A B$ and $C D$ be intersected by line $X Y$ at the points $P$ on $A B$ and $Q$ on $C D$ in such a way that A and C are on one side of XY and B and D are on the other. Answer the following questions using this figure:
a. If $m \angle A P Q=\frac{1}{2} x+3, m \angle P Q D=\frac{2}{3} x-8$, find the measure of each of these angles.
b. If $m \angle A P Q=x^{2}+x+1, m \angle Q P B=3 x^{2}+7 x+39$, find the measure of each of these angles.
c. What is the measure of the angle formed by the intersection of the angle bisector of $\angle B P Q$ and the angle bisector of $\angle D Q P$ ?
2. In $\triangle A B C$, if the ratio of $m \angle A: m \angle B: m \angle C=3: 4: 5$, find the measure of each angle of the triangle.
3. In $\triangle A B C$, extend side $A C$ past C to the point D. If $m \angle A=2 x^{2}+5 x-5, m \angle B=5 x^{2}-x-3$, and $m \angle B C D=120^{\circ}$, find the measure of each of these three angles. (Give all solutions that work.)
4. In $\triangle A B C$, suppose that the bisector of angle B meets side AC at point E . If $\mathrm{AB}=12, \mathrm{BC}=14$, and $\mathrm{AC}=18$, find AE and EC .
5. Given right triangle ABC with right angle at C , altitude CD is drawn to the hypotenuse of the triangle. If $\mathrm{AD}=$ $\sqrt{12}$, and $\mathrm{DB}=4 \sqrt{3}$, find $\mathrm{AC}, \mathrm{CB}$, and CD .
6. In parallelogram $\mathrm{ABCD}, \mathrm{AB}=31, \mathrm{BC}=20, \mathrm{CD}=5 \mathrm{x}+3 \mathrm{y}$, and $\mathrm{DA}=3 \mathrm{x}+2 \mathrm{y}$. Find x and y .
7. If ABCD is a rhombus with diagonal $\mathrm{AC}=10$, and diagonal $\mathrm{DB}=24$, find the perimeter of the rhombus.
8. If ABCD is a rectangle and P is any point in its interior, prove that $A P^{2}+P C^{2}=P B^{2}+P D^{2}$.
9. In trapezoid ABCD with bases $\overline{A B}$ and $\overline{C D}$, if $\mathrm{AB}=10$ and $\mathrm{DC}=22$, find the length of the median (also known as midsegment) of the trapezoid.
10. Given trapezoid ABCD with bases $\overline{A B}$ and $\overline{C D}$, draw diagonals AC and BD . Let E be the midpoint of AC and $F$ the midpoint of $B D$.
a. Prove that E and F lie on the midsegment of the trapezoid.
b. If $\mathrm{AB}=10$ and $\mathrm{DC}=22$, find EF .
11. Suppose isosceles trapezoid ABCD has $\mathrm{AD}=\mathrm{BC}=13, \mathrm{AB}=10$, and $\mathrm{DC}=22$. Find the area of the trapezoid.
XVI.
12. Given circle O with points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D on the circle, answer the following:
a. If $m \angle A O B=60^{\circ}$ and OA is 8 , determine the area of sector AOB .
b. If $m \angle A O B=30^{\circ}$ and $\mathrm{OA}=10$, determine the area of the segment formed by chord AB and arc AB .
c. If $\mathrm{AC}=16$ and OA is 10 , how far is chord AC from the center O .
13. Let chords AB and CD of circle O intersect at point E . If $B E=x, E A=3 x-1, D E=x-1$, and $C E=4 x$, find the lengths of these chords.
14. From a point P outside of circle O , let $\overline{P R}$ be tangent to the circle at R and let secant $\overleftrightarrow{P M}$ intersect the circle at M and N (with M between P and N ). If $\mathrm{PM}=9$ and $\mathrm{MN}=3$, find PR .
15. From a point P outside of circle O , let PR and PS be tangent to the circle at R and S respectively. Find OP if the radius of the circle is 5 and $\mathrm{PR}=13$.
XVII. Proofs:
16. Use a truth table to prove the validity of $[(P \wedge \sim Q) \vee Q] \rightarrow(P \vee Q)$
17. Prove that the base angles of an isosceles triangle are congruent three times in three different ways.
XVIII. Given the indicated measures of angles and lengths of sides, solve the triangles below for the missing parts.
18. Given right triangle $\mathrm{ABC}, m \angle A=56^{\circ}, a=42 \mathrm{~km}, c=51 \mathrm{~km}$.
19. $m \angle B=43^{\circ}, m \angle C=36^{\circ}, a=92 \mathrm{~cm}$
20. $a=21.1 m, \quad b=24.6 m \quad c=12.0 m$
