Developing Computational Fluency in Grade 4

Addition: Partial Sums

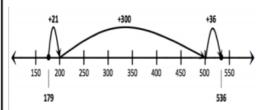
Many times it is easier to break apart addends. Often it makes sense to break them apart by their place value. Consider 248 + 345

Sometimes we might use partial sums in different ways to make an easier problem. Consider 484 + 276

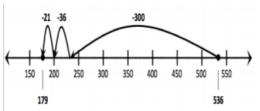
Addition: Adjusting

We can adjust addends to make them easier to work with. We can adjust by giving a value from one addend to another.

Consider 326 + 274. We can take 1 from 326 and give it to 274.


Consider 173 + 389. We can take 27 from 389 and give it to 173 to make 200.

More Friendly Problem
$$\rightarrow$$
 200 + 362 = 562


Subtraction: Count Up or Count Back

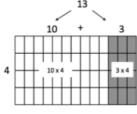
When subtracting, we can count back to find the difference of two numbers. In many situations, it is easier to count up.

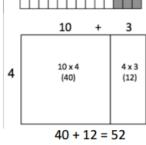
Consider 536 – 179

We can count up from one number to the other. The difference is 300 + 21 + 36 or 357. (above)

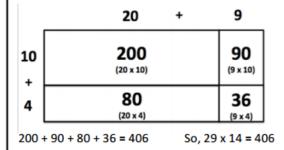
We can count back from one number to the other. The difference is -300 (land at 236), -36 (land at 200), -21 (end at 179).

Subtraction: Adjusting


We can use "friendlier numbers" to solve problems. 4,000 – 563 can be challenging to regroup. But the difference between these numbers is the same as the difference between 3,999 – 562. Now, we don't need to regroup.


Multiplication: Area/Array

The area/array model for multiplication and the distributive property are used to solve multiplication problems


This is the same model without grid lines. It is considered an

"open model."

The open model also works well with 2 or 3digit factors. This supports development of algorithms later, as well as mental mathematics. Consider 29 x 14

Developing Computational Fluency in Grade 4

Multiplication: Partial Products

Students move from area/array models (other side) to working with numbers.

Consider 26 x 45, we can break apart each factor by its place value.

26 = (20 + 6) We can then multiply each 45 = (40 + 5) of the "parts" and add them back together.

$$(20 \times 40) + (20 \times 5) + (40 \times 6) + (6 \times 5)$$

$$800 + 100 + 240 + 30$$

$$900 + 240 + 30$$

$$1,140 + 30$$
So, $26 \times 45 = 1,170$

$$1,170$$

It might seem like a lot of numbers above. But, when we think about it, the multiplication is quite simple. This understanding develops mental math, the traditional algorithm, and algebraic concepts including factoring polynomials.

Sometimes, it makes sense to work with different parts. Consider 51 x 21. We might think of 21 as 10 + 10 + 1:

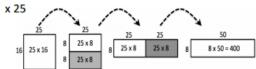
$$(51 \times 10) + (51 \times 10) + (51 \times 1)$$

$$510 + 510 + 51$$

$$1,020 + 51$$
So, $51 \times 21 = 1,071$

$$1,071$$

Another example, consider 4×327 . We can break 327 into (300 + 20 + 7) then multiply.


$$4 \times 300 = 1,200$$

$$4 \times 20 = 80$$

$$+ 4 \times 7 = 28$$
So, $4 \times 327 = 1,308$
1,308

Doubling and Halving

There are many strategies we can take advantage of so that computation is efficient. Doubling and halving is an example. When multiplying, we can double one factor and halve the other. The product is unchanged. This makes some numbers easier to work with. Consider 16

The image shows that we can halve 16 (8 + 8) and then double 25. So, 16 x 25 is the same as 8 x 50.

Division

4th grade students are beginning to develop an understanding of division with larger numbers. One approach is to take groups of numbers, usually "friendly numbers" out.

Consider this:

We have 252 buttons to put in 4 boxes. How many buttons can we put in each box? (252 ÷ 4)

We can put 50 in each box $(4 \times 50) = 200$ We can put 10 in each box $(4 \times 10) = 40$ We can put 3 in each box $(4 \times 3) = 12$ 63

So, we can put 63 buttons in each box. $252 \div 4 = 63$

Another approach is to break apart the dividend into "friendly numbers." Consider 252 ÷ 4. We could break 252 into (240 + 12) and divide each by 4.

 $240 \div 4 = 60$ 60 + 3 = 63 $12 \div 4 = 3$ So, $252 \div 4 = 63$

Thurgood Marshall Family Math Night

Grade 4

Adapted from: http://smart.wikispaces.hcpss.org Howard County Public Schools