
AP Biology in MCPS

What you can expect

May 8th Wootton High School

Outcomes

By the end of this session, we will:

- Explain the paradigm shifts in AP Biology,
- Explore the breadth and depth of content within the course,
- Examine the pacing of the course,
- Discuss how this course prepares students for the MISA, college and career.

Jacki Bragg

 National Board Certified teacher - 23 years teaching with MCPS

- 16 years teaching AP Biology
- MCPS NGSS Biology curriculum and assessment writer.

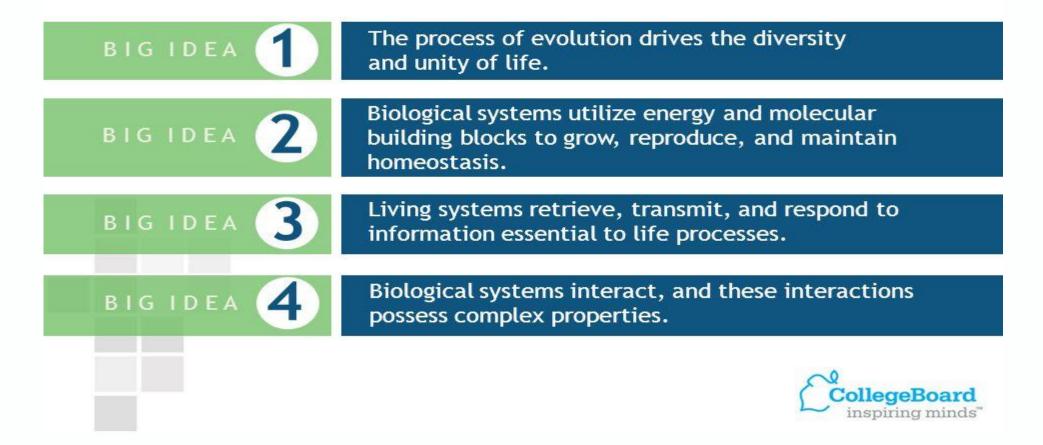
High School Course Pathways

Grade 9	Grade 10	Grade 11 MISA	Grade 12			
NGSS Biology	NGSS Chemistry	NGSS Physics	AP or IB Science or Elective			
Core Pathway						
NGSS Biology	NGSS Chemistry	AP or IB Science	AP or IB Science or Elective			
NGSS Physics or AP Physics	NGSS Chemistry	NGSS Biology or AP/IB Biology	AP or IB Science or Elective			

Alignment with NGSS

AP Enduring Understanding	AP Essential Knowledge Focus	NGSS Disciplinary Core Idea Element(s)	NGSS Performance Expectation(s)	Comments about the Connections
1.A Change in the	1.A.1 Natural	HS.LS2.C: Ecosystem Dynamics, Functioning, and Resilience	HS-LS2-6 Evaluate the claims,	The NGSS build a
genetic makeup of	selection is a major	A complex set of interactions within an ecosystem can keep its numbers and	evidence, and reasoning that the	foundation for students to
a population over	mechanism of	types of organisms relatively constant over long periods of time under stable	complex interactions in	understand the theory of
time is evolution.	evolution.	conditions. If a modest biological or physical disturbance to an ecosystem	ecosystems maintain relatively	natural selection and how
		occurs, it may return to its more or less original status (i.e., the ecosystem is	consistent numbers and types of	it is a mechanism for
		resilient), as opposed to becoming a very different ecosystem. Extreme	organisms in stable conditions, but	evolution. AP EK 1.A.1
		fluctuations in conditions or the size of any population, however, can challenge	changing conditions may result in	goes beyond the NGSS by
		the functioning of ecosystems in terms of resources and habitat availability.	a new ecosystem.	including details about
				how environmental
		HS.LS3.B: Variation of Traits	HS-LS3-2 Make and defend a claim	conditions can affect
		In sexual reproduction, chromosomes can sometimes swap sections during the	based on evidence that inheritable	evolutionary rate and
		process of meiosis (cell division), thereby creating new genetic combinations	genetic variations may result from:	direction, the Hardy-
		and thus more genetic variation. Although DNA replication is tightly regulated	new genetic combinations	Weinberg equilibrium,
		and remarkably accurate, errors do occur and result in mutations, which are also	through meiosis, (2) viable errors	and the mathematical
		a source of genetic variation. Environmental factors can also cause mutations in	occurring during replication,	calculations involved for
		genes, and viable mutations are inherited.	and/or (3) mutations caused by	changes in allele
			environmental factors.	frequency.
		Environmental factors also affect expression of traits, and hence affect the		
		probability of occurrences of traits in a population. Thus the variation and	HS-LS3-3 Apply concepts of	
		distribution of traits observed depends on both genetic and environmental	statistics and probability to explain	
		factors.	the variation and distribution of	
			expressed traits in a population.	
		HS.LS4.B: Natural Selection		
		Natural selection occurs only if there is both (1) variation in the genetic	HS-LS4-2 Construct an explanation	
		information between organisms in a population and (2) variation in the	based on evidence that the	

Redesigned curriculum in 2012 and 2019


Hallmarks of the redesigned course and exam:

- A greater emphasis on discipline-specific inquiry, reasoning, and communication skills
- Rigorous, research-based curricula, modeled on introductory college courses, that strike a balance between breadth of content coverage and depth of understanding.
- Standards based objectives
- Detailed curriculum frameworks, which tie the disciplinespecific concepts, themes, and skills to a set of key learning objectives and emphasize conceptual understanding
- Exam questions designed to elicit evidence of student achievement for each learning objective.

AP Biology Curriculum Is Framed Around Four Big Ideas

Course Pacing

- AP Biology covers topics regularly covered in a college biology course for MAJORS.
- As such, the textbook used, the range and depth of topics covered, the type of laboratory work, and the time and effort required of students will differ significantly from the student's first high school biology course.

Course Overview

General Topics within the Big Idea Framework

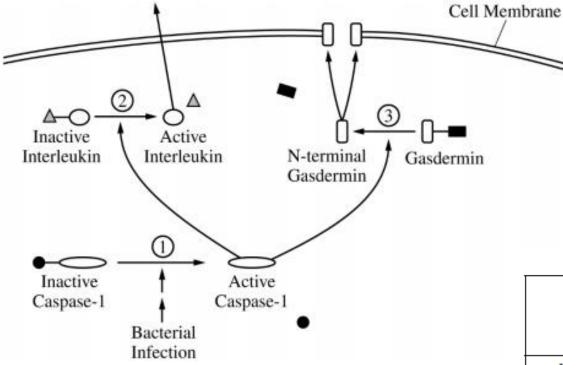
- Evolution and Ecology
- Biochemistry
- Cell Structure and Function
- Molecular Genetics
- Classical Genetics
- Energetics and Ecosystems
- Cell Signaling and Communication
 - Signal Transduction Pathways

MCPS

- ≻ Immune System
- ➤ Endocrine System
- ➤ Nervous System
- Energetics and Ecosystems

9

Big Idea 1


Emphasis on Science Practices

The science practices enable students to establish lines of evidence and use them to develop and refine testable explanations and predictions of natural phenomena

1.0 The student can use representations and models to communicate SCIENCE scientific phenomena and solve scientific problems PRACTICES 2.0 The student can use mathematics appropriately 3.0 The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course 4.0 The student can plan and implement data collection strategies appropriate to a particular scientific question 5.0 The student can perform data analysis and evaluation of evidence 6.0 The student can work with scientific explanations and theories 7.0 The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains CollegeBoard

inspiring minds"

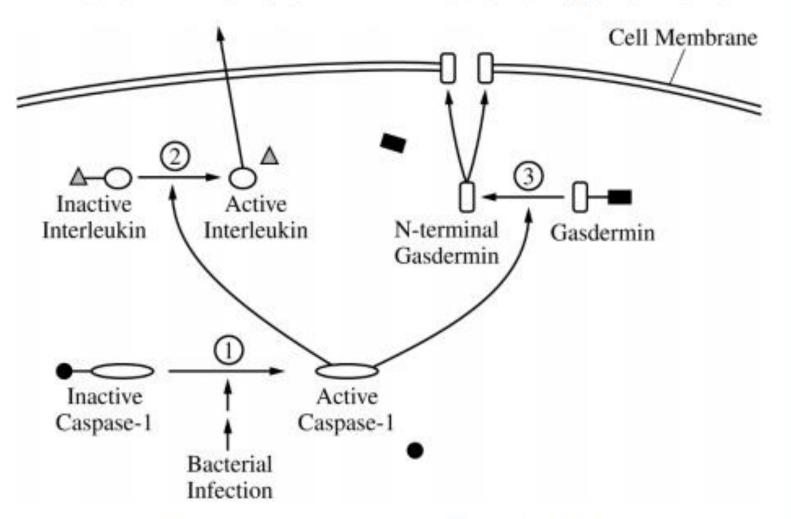
2018 AP[®] BIOLOGY FREE-RESPONSE QUESTIONS

Figure 1. Cellular response to infection by pathogenic bacteria

Students must read, process, and respond in 22.5 minutes

Some pathogenic bacteria enter cells, replicate, and spread to other cells, causing illness in the host organism. Host cells respond to these infections in a number of ways, one of which involves activating particular enzymatic pathways (Figure 1). Cells normally produce a steady supply of inactive caspase-1 protein. In response to intracellular pathogens, the inactive caspase-1 is cleaved and forms an active caspase-1 (step 1). Active caspase-1 can cleave two other proteins. When caspase-1 cleaves an inactive interleukin (step 2), the active portion of the interleukin is released from the cell. An interleukin is a signaling molecule that can activate the immune response. When caspase-1 cleaves gasdermin (step 3), the N-terminal portions of several gasdermin proteins associate in the cell membrane to form large, nonspecific pores.

Researchers created the model in Figure 1 using data from cell fractionation studies. In the experiments, various parts of the cell were separated into fractions by mechanical and chemical methods. Specific proteins known to be located in different parts of the cell were used as markers to determine the location of other proteins. The table below shows the presence of known proteins in specific cellular fractions.


CELL FRACTIONS CONTAINING DIFFERENT CELLULAR PROTEINS

	Aconitase (Krebs cycle protein)	DNA polymerase	GAPDH (glycolytic protein)	Sodium- potassium pump	NF- <i>K</i> B (Immune response protein)		
Whole cell sample	+	+	+	+	+		
Fraction 1	+						
Fraction 2		+			+		
Fraction 3			+		+		
Fraction 4				+			
	+ = presence of protein						

- (a) Describe the effect of inhibiting step 3 on the formation of pores AND on the release of interleukin from the cell.
- (b) Make a claim about how cleaving inactive caspase-1 results in activation of caspase-1. A student claims that preinfection production of inactive precursors shortens the response time of a cell to a bacterial infection. Provide ONE reason to support the student's claim.
- (c) A student claims that the NF-κB protein is located in the cytoplasm until the protein is needed for transcription. Justify the student's claim with evidence. Identify TWO fractions where N-terminal gasdermin would be found in cells infected with pathogenic bacteria.
- (d) Describe the most likely effect of gasdermin pore formation on water balance in the cell in a hypotonic environment.
- (e) Explain how gasdermin pore formation AND interleukin release contribute to an organism's defense against a bacterial pathogen.

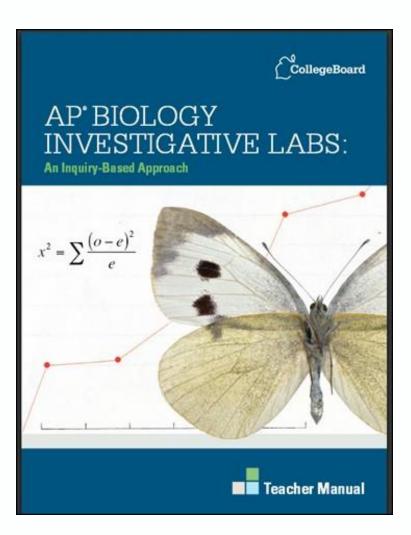
Students must read, process, and respond in 22.5 minutes

2018 AP® BIOLOGY FREE-RESPONSE QUESTIONS

Figure 1. Cellular response to infection by pathogenic bacteria

Some pathogenic bacteria enter cells, replicate, and spread to other cells, causing illness in the host organism. Host cells respond to these infections in a number of ways, one of which involves activating particular enzymatic pathways (Figure 1). Cells normally produce a steady supply of inactive caspase-1 protein. In response to intracellular pathogens, the inactive caspase-1 is cleaved and forms an active caspase-1 (step 1). Active caspase-1 can cleave two other proteins. When caspase-1 cleaves an inactive interleukin (step 2), the active portion of the interleukin is released from the cell. An interleukin is a signaling molecule that can activate the immune response. When caspase-1 cleaves gasdermin (step 3), the N-terminal portions of several gasdermin proteins associate in the cell membrane to form large, nonspecific pores.

Researchers created the model in Figure 1 using data from cell fractionation studies. In the experiments, various parts of the cell were separated into fractions by mechanical and chemical methods. Specific proteins known to be located in different parts of the cell were used as markers to determine the location of other proteins. The table below shows the presence of known proteins in specific cellular fractions.


CELL FRACTIONS CONTAINING DIFFERENT CELLULAR PROTEINS

	Aconitase (Krebs cycle protein)	DNA polymerase	GAPDH (glycolytic protein)	Sodium- potassium pump	NF- <i>k</i> B (Immune response protein)		
Whole cell sample	+	+	+	+	+		
Fraction 1	+						
Fraction 2		+			+		
Fraction 3			+		+		
Fraction 4				+			
	+ = presence of protein						

Overview of Labs

- 13 recommended labs
- Student driven
- Inquiry approach
- Time intensive
- Teachers may substitute other activities
- Detailed lab notebooks are kept as colleges may ask to see lab work before awarding AP credit.

Big Idea: Evolution

1.Artificial Selection

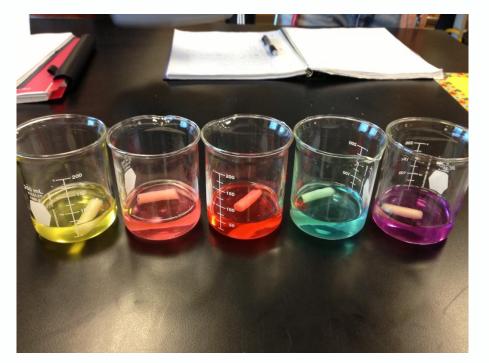
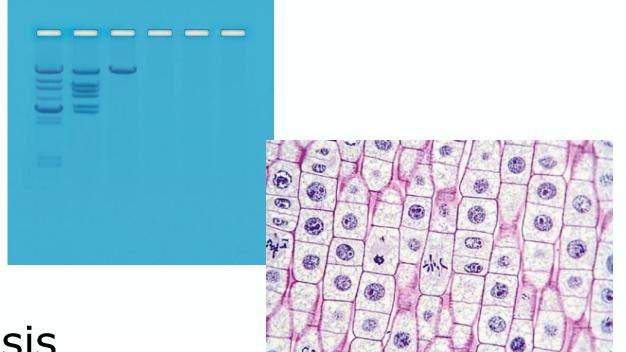

- Mathematical Modeling (Hardy-Weinberg)
 Comparing DNA sequences to determine evolutionary relatedness.
 - Use this data to construct a cladogram of the major plant groups

Table 1. Characteristics of Major Plant Groups

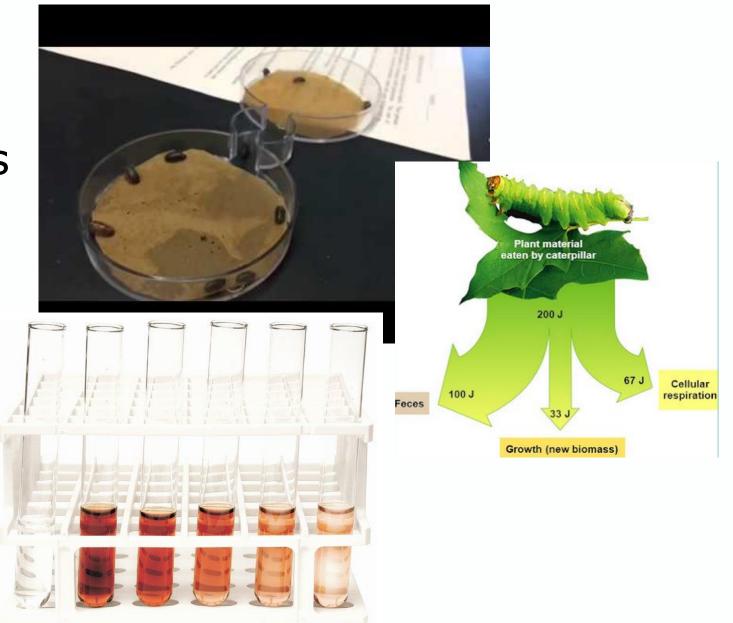
Organisms	Vascular Tissue	Flowers	Seeds	
Mosses	0	0	0	
Pine trees	1	0	1	
Flowering plants	1	1	1	
Ferns	1	0	0	
Total	3	1	2	

Big Idea: Cellular Processes(Energy and Communication)1.Diffusion and Osmosis2.Photosynthesis3.Cellular Respiration



Big Idea: Genetics and Information Transfer

Mitosis and Meiosis
 Bacterial Transformation
 Restriction Enzyme Analysis



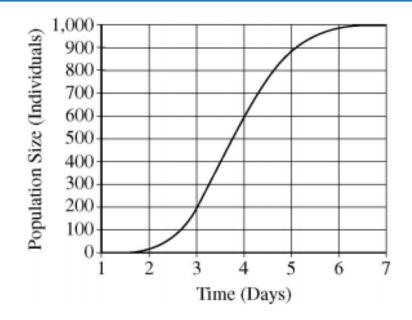
Big Idea: Interactions

Energy Dynamics
 Transpiration
 Animal Behavior
 Enzyme Activity

The AP Exam

		0	0	0	
Θ	\bigcirc	\bigcirc	0	\bigcirc	0
		0	0	0	0
	1	1	1	1	1
	2	2	2	2	2
	3	3	3	3	3
	4	4	4	4	4
	5	5	5	5	5
	6	6	6	6	6
	1	1	\bigcirc	\bigcirc	7
	8	8	8	8	8
	9	9	9	9	9

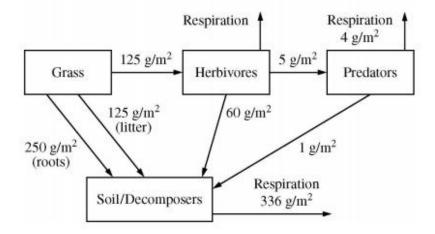
Section	Question Type	Number of Questions		Scoring	Timing
I	Part A: Multiple Choice	63	50% of the final		90 minutes
	Part B: Grid-In	6	score		
II	Long Free Response	2	25% of the final score	Each question will be scored on a 0–10 point scale and will contribute 12.5% of the exam's composite score. Students will have approximately 20–25 minutes to answer each question.	80 minutes + 10-minute reading period
	Short Free Response	6	25% of the final score	Each form will include three 3-point and three 4-point short free-response questions. Students will have approximately 3–10 minutes to answer each question.	



19. The first diagram below shows the levels of mRNA from two different genes (*bicoid* and *caudal*) at different positions along the anteriorposterior axis of a *Drosophila* egg immediately before fertilization. The second diagram shows the levels of the two corresponding proteins along the anterior-posterior axis shortly after fertilization.

Which of the following conclusions is best supported by the data?

- (A) Bicoid protein inhibits translation of caudal mRNA.
- (B) Bicoid protein stabilizes caudal mRNA.
- (C) Translation of bicoid mRNA produces caudal protein.
- (D) Caudal protein stimulates development of anterior structures.


 Use the graph above to calculate the mean rate of population growth (individuals per day) between day 3 and day 5. Give your answer to the nearest whole number.

 In a certain species of flowering plant, the purple allele P is dominant to the yellow allele p.

A student performed a cross between a purple-flowered plant and a yellow-flowered plant. When planted, the 146 seeds that were produced from the cross matured into 87 plants with purple flowers and 59 plants with yellow flowers.

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flower-color gene. Give your answer to the nearest tenth.

 How much carbon (in g/m²) is released into the atmosphere as a result of the metabolic activity of herbivores? Give your answer to the nearest whole number.

The AP Biology Exam is challenging

Sciences 2018 Data

Exam	5	4	3	2	1
Biology	7.2%	21.6%	32.8%	28.3%	10.2%
Chemistry	13.4%	17.6%	24.9%	23.5%	20.6%
Environmental Science	8.8%	23.9%	15%	25.8%	26.5%
Physics 1	5.7%	15.3%	19.6%	28.6%	30.8%
Physics 2	13.1%	15.6%	34.4%	29.2%	7.75%
Physics C: Electricity and Magnetism	37.4%	22.5%	13.5%	16.3%	10.3%
Physics C: Mechanics	30.2%	27.3%	19.7%	12.7%	10%

Biology	2017	6.2%	20.9%	36.7%	27.8%	8.4%
Biology	2016	6.3%	20.6%	33.6%	29.2%	10.3%
Biology	2015	6.2%	22.0%	35.9%	27.6%	8.3%
Biology	2014	6.5%	22.2%	35.1%	27.4%	8.8%

Final Thoughts

The skills and processes approach to AP Biology is excellent preparation for:

- College courses, particularly STEM courses,
- The MISA,
- Any course or career that requires effective communication and analytic skills.

Questions?

Index Card:

Online form:

please include your contact info Type the link in your browser or scan the QR code

bit.ly/SciNight19

For more information on <u>enrolling</u> your student in this course, please contact the Counselor and/or the Science Department Resource Teacher at your high school.

