LOCAL AREA TRANSPORTATION REVIEW WOODWARD HIGH SCHOOL MONTGOMERY COUNTY, MARYLAND

Prepared For:

Montgomery County Public Schools

September 23, 2019

Revised: April 23, 2020

Project Manager: David A. Nelson, P.E., P.T.O.E.

Mike Nalepa - Street Traffic Studies, Ltd.

STS Job No.: 6671

CONTENTS

r AG.	JE.
TRODUCTION 1	
XISTING CONDITIONS 3	
Roadway System Elements 3	
Existing Traffic Volumes 3	
School Traffic Circulation	
ACKGROUND TRAFFIC ANALYSIS	
Planned Developments	
Trip Generation	
Trip Distribution	
TE TRAFFIC ANALYSIS	
Trip Generation Analysis	
Queuing Analyses	
EDESTRIAN/BICYCLE/TRANSIT SYSTEM ADEQUACY	
Pedestrian System Adequacy	
ADA Noncompliance Issues	
Bicycle System Adequacy	
Transit System Adequacy	
ONCLUSIONS 42	

EXHIBITS

	PAGE	ì
1	SITE LOCATION	
2	EXISTING LANE USE4	
3	EXISTING TRAFFIC VOLUMES	
4	EXISTING PEDESTRIAN VOLUMES	
5	EXISTING BICYCLE VOLUMES 8	
6	PROPOSED CONCEPT PLAN	
7	TRIPS GENERATED BY PLANNED DEVELOPMENTS	
8	BACKGROUND TRAFFIC VOLUMES	
9	PROPOSED LANE USE	
10	REVISED EXISTING TRAFFIC VOLUMES	
11	NEW SITE GENERATED TRIPS	
12	TOTAL TRAFFIC VOLUMES	
13	ADA FEATURES	

APPENDICES

A	TRAFFIC STUDY SCOPE OF WORK AGREEMENT
В	VEHICLE TURNING MOVEMENT COUNTS
C	CAPACITY CALCULATIONS - EXISTING CONDITIONS
D	PLANNED DEVELOPMENT DATA
E	CAPACITY CALCULATIONS - BACKGROUND CONDITIONS
F	TILDEN MIDDLE SCHOOL COUNTS
G	CAPACITY CALCULATIONS - TOTAL CONDITIONS
Н	AUTOTURN ANALYSES
I	SimTraffic WORKSHEET
J	CURB RAMP SURVEY SHEETS
K	CROSSWALK EVALUATIONS
L	BUS ROUTE INFORMATION

INTRODUCTION

Montgomery County Public Schools (MCPS) is proposing to replace the existing Tilden Middle School located at 11211 Old Georgetown Road with a 2,700 student high school. The existing middle school has an enrollment of 947 students for the current 2018-19 academic year. MCPS has a project which will relocate Tilden Middle School to a site located at the Tilden Lane/Marcliff Road intersection. Once the existing middle school has been relocated the site will be cleared and a new 2,700 student high school will be constructed. Initially the school will be used as a holding school for the Northwood High School while that existing school undergoes a major renovation. Once the Northwood High School project has been completed a decision will be made regarding the future use of the Woodward High School site. It could be used as a new high school to relieve crowding at nearby high schools or it could be used as a county wide magnet school. In any event, the school will have a core capacity of approximately 2,700 students. The school site is shown on Exhibit 1.

Street Traffic Studies, Ltd. has been retained to undertake the required traffic study under the provisions of the *Local Area Transportation Review and Transportation Policy Area Review Guidelines* for a site generating more than 50 peak hour person trips.

The purpose of the traffic study is to evaluate the adequacy of the transportation facilities that are available to serve the site in accordance with the procedures outlined in the Local Area Transportation Review and Transportation Policy Area Review Guidelines as adopted by the Planning Board. Current traffic data was acquired at seven (7) intersections in the vicinity of the site including the school driveways. The North Bethesda policy area is within the Orange category and consequently the Highway Capacity Manual and Critical Lane Volume procedures were used to evaluate intersection levels of service. The Traffic Study Scope of Work Agreement is contained in Appendix A.

Since this project is being built solely as a public facility by the Montgomery County government it is not required to pay a transportation impact tax.

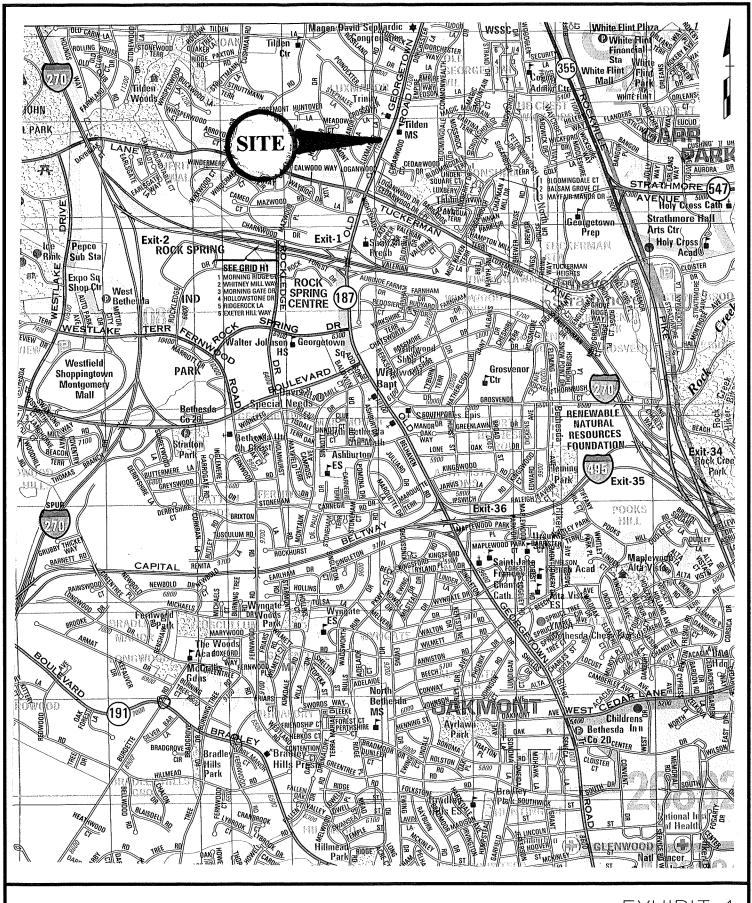


EXHIBIT 1 SITE LOCATION

EXISTING CONDITIONS

Roadway System Elements

The existing Tilden Middle School site is located along in the east side of MD 187 just north of Tuckerman Lane. The site is currently served by two (2) access points on MD 187. The north access is restricted to exit only and is controlled with a traffic signal. The south access is a full movement access controlled with a STOP sign and while outbound movements at this access are permitted; they are restricted to right turns only between the hours of 7:15 to 8:15 AM and 2:30 to 3:30 PM. With the construction of the high school it is anticipated that the north access will remain signalized; although it will be moved south to provide more stacking area for the southbound left turn movement. This access will serve as the main access/egress to the site. The south access will serve the bus loop and will be unsignalized. Additionally a right in/right out access is proposed near the northern boundary of the school.

The approach lanes and traffic controls at the existing intersections analyzed as the basis for this study are shown in Exhibit 2.

Old Georgetown Road (MD 187) is a six lane divided major highway in the vicinity of the site. It has a posted speed limit of 40 MPH and it is classified as a Major Highway. Five (5) foot wide concrete sidewalks are provided along both sides of MD 187.

Existing Traffic Volumes

Manual turning movement traffic counts were conducted by Street Traffic Studies, Ltd. in February 2019 at the intersections that were agreed upon with staff. The counts were conducted between 6:30 AM and 9:30 AM in the morning and between 2:00 PM and 5:00 PM in the evening. The summarized data for these intersections are included in Appendix B.

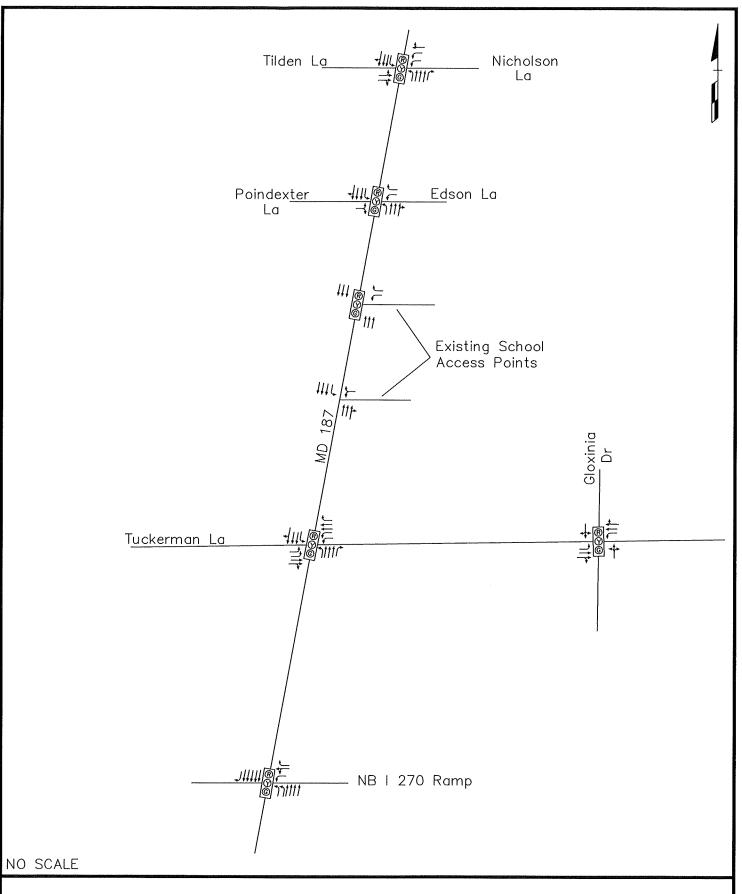


EXHIBIT 2 EXISTING LANE USE Based on the counts conducted at similar high schools within Montgomery County, the peak hour for high schools in the morning is between 7:00 and 8:00 AM and the evening peak hour for the school was between 2:15 and 3:15 PM. For the purposes of this analyses, the morning peak hour at the study intersection was analyzed and the evening peak hour was assumed to be 2:15 to 3:15 PM The peak one hour traffic flows at the study intersections are shown in Exhibit 3. The existing pedestrian and bicycle peak hour volumes are shown in Exhibits 4 and 5.

The existing peak hour traffic volumes shown in Exhibit 3 were subjected to a capacity analysis procedure using the Highway Capacity Manual technique and the Critical Lane Volume technique as described in M-NCPPC's *LATR/TPAR Guidelines*. The results of the analysis are set forth in Tables I and 2 and the worksheets and signal timing sheets from which they are derived are in Appendix C.

TABLE 1
HCM CAPACITY ANALYSES RESULTS
(EXISTING PEAK HOUR VOLUMES)

INTERSECTION	MORNING PEAK HOUR	EVENING PEAK HOUR	CONGESTION STANDARD
MD 187 @ I 270 NB Ramp	(38.3)	(21.6)	71 sec/veh
MD 187 @ Tuckerman La	(55.1)	(35.1)	71 sec/veh
MD 187 @ Edson La-Poindexter	La (8.6)	(13.1)	71 sec/veh
MD 187 @ Nicholson La-Tilden L	_a (35.6)	(22.7)	71 sec/veh
Tuckerman La @ Gloxinia Dr	(36.7)	(41.6)	71 sec/veh

(0000) - (Delay in sec/veh)

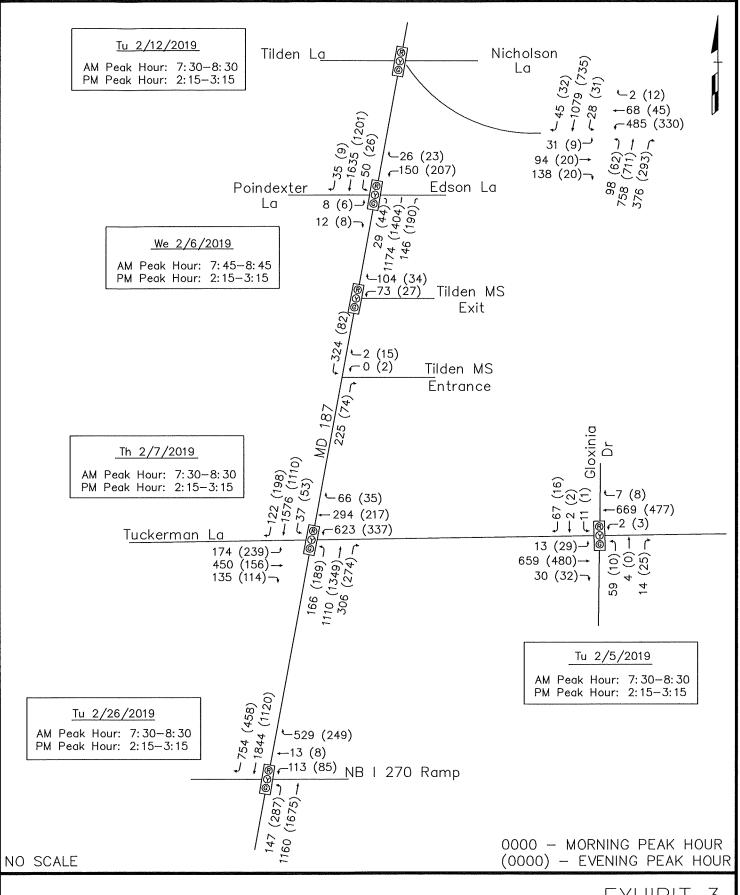


EXHIBIT 3

EXISTING TRAFFIC VOLUMES

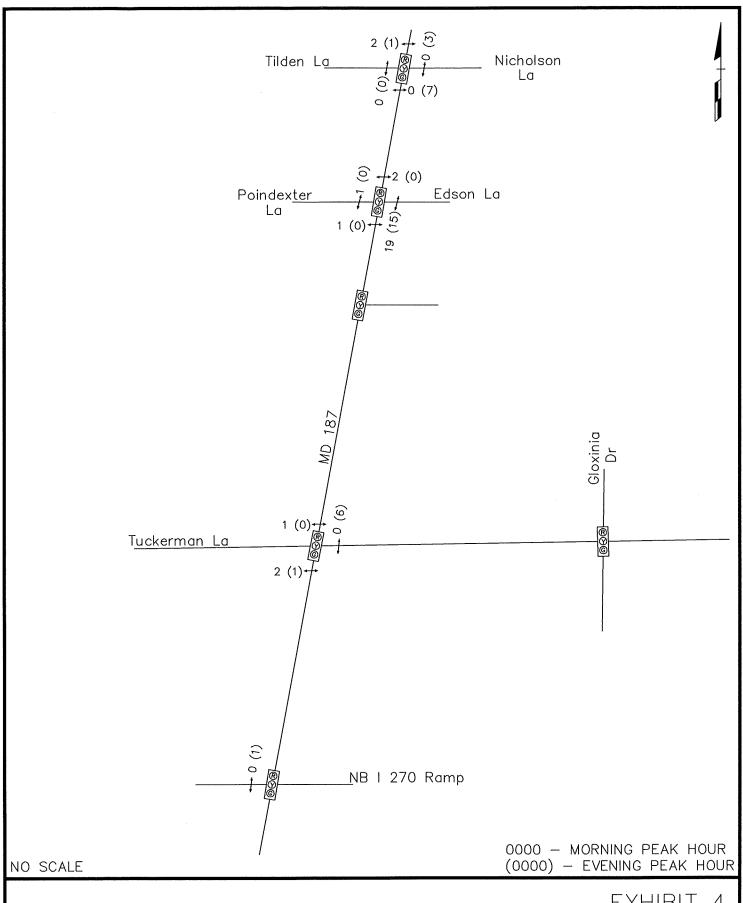


EXHIBIT 4
EXISTING PEDESTRIAN VOLUMES

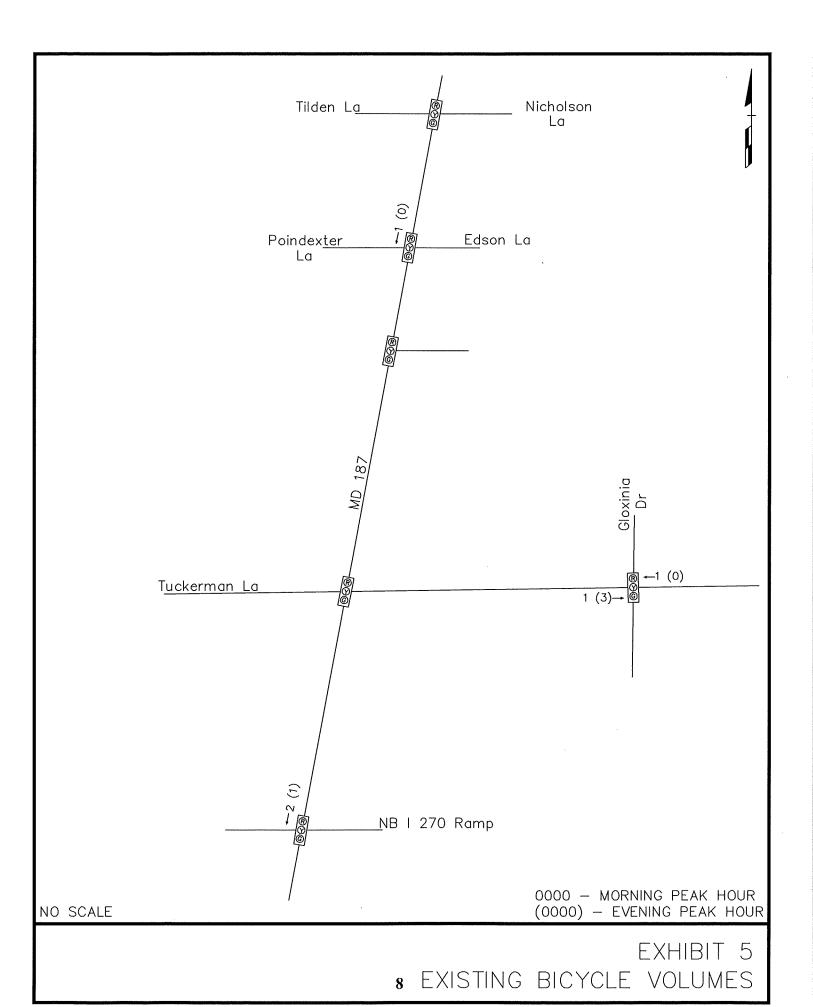


TABLE 2
CLV CAPACITY ANALYSES RESULTS
(EXISTING PEAK HOUR VOLUMES)

INTERSECTION	MORNING PEAK HOUR	EVENING PEAK HOUR	CONGESTION STANDARD
MD 187 @ I 270 NB Ramp	(616)	(552)	1550
MD 187 @ Tuckerman La	(1478)	(1018)	1550
MD 187 @ Edson La-Poindexter	La (820)	(837)	1550
MD 187 @ Nicholson La-Tilden L	.a (944)	(632)	1550
Tuckerman La @ Gloxinia Dr	(511)	(323)	1550

(0000) - (Critical Lane Volume)

As shown in Tables 1 and 2, all of the critical intersections currently operate within acceptable levels during both the morning and evening peak hours.

School Traffic Circulation and Queuing

Existing operations at the Tilden Middle School operate smoothly and efficiently with the exception of an approximately 15 minute time frame during the morning arrival and afternoon dismissal periods.

The proposed construction will relocate the existing signalized egress point further south to increase the separation between this signal and the existing signal at the Poindexter Lane-Edson Lane intersection. The southern access will primarily serve the school bus loop and will remain unsignalized. Additionally a right in/right out access is proposed near the northern boundary of the school. The Proposed Concept Plan is shown in Exhibit 6.

EXHIBIT 6 PROPOSED CONCEPT PLAN 10

BACKGROUND TRAFFIC ANALYSIS

As indicated in the correspondence between the consultant and the staff at M-NCPPC included in Appendix D, there are 13 background developments in the general vicinity of the site that needed to be analyzed as a part of this study. The details regarding each of these developments are discussed below.

Planned Developments

In accordance with procedures established by the LATR guidelines, the analysis of the traffic impact of proposed development must include traffic projections for other planned developments in the "vicinity" of the site. The listing of planned developments are shown in Table 3.

TABLE 3
BACKGROUND DEVELOPMENT

DEVELOPMENT	LAND USE	DENSITY
1. Pike & Rose	Retail Office High-rise apts	143,835 s.f 682,691 s.f. 734 du's
2. N Bethesda Center	Retail Office Mid-rise apts	152,791 s.f 809,338 s.f. 697 du's
3. 6111 Executive Blvd	Lab R&D	17,475 s.f 11,647 s.f.
4. Gables @ White Flint	Retail High-rise apts	20,890 s.f 476 du's

TABLE 3
BACKGROUND DEVELOPMENT

DEVELOPMENT	LAND USE	DENSITY
5. 6000 Executive Blvd	Retail Office Senior apts	9,300 s.f. 305,641 s.f. 365 du's
6. North Bethesda Market II	Mid-rise apts Retail	470 du's 103,735 s.f.
7. North Bethesda Gateway	Mid-rise apts Retail	614 du's 35,500 s.f.
8. The Saul Centers	Mid-rise apts Office	655 du's 136,950 s.f.
9. Luxmanor ES	Elementary School	316 students
10. Rock Terrace/Tilden MS	Elementary/Middle Schoo	I
11. Alef Bet Montessori School	Private School (K-8)	90 students
12. Wildwood Residential	Mid-rise apts Retail	60 du's 11,000 s.f.
13. Rock Spring Center	Mid-rise apts Hotel Office Retail Movie theater	844 du's 200 rooms 549,900 s.f. 210,000 s.f. 90,000 s.f.

Trip Generation

To determine the traffic associated with each of the background developments, trip generation rates were taken from the ITE Trip Generation publication, 10th Edition. The trip rates for the Luxmanor Elementary School, the Rock Terrace/Tilden Middle School, Wildwood Residential and the Rock Spring Center were taken from earlier studies. The relative sheets from these studies are included in Appendix D.

The trip rates used for the developments not taken from earlier studies are shown in Table 4.

TABLE 4
TRIP GENERATION RATES

LAND USE	MORNING PEAK HOUR			EVENI	NG PEAR	(HOUR
	<u>IN</u>	<u>OUT</u>	TOTAL	<u>IN</u>	<u>OUT</u>	TOTAL
Retail (820)		.50(X) + 15 38%	51.78 100%	, ,	0.74Ln(X 52%)+2.89 100%
Office (710)		.94(X) + 26 14%		' '	0.95Ln(X 84%)+0.36 100%
R & D Center (760)		0.10 25%	0.42 100%	Ln(T)= 15%	∙0.35Ln(X 85%)+2.36 100%
Multifamily mid-rise (221)	, ,	=0.98Ln(X 74%)-0.98 100%	Ln(T)= 61%	0.96Ln(X 39%)-0.63 100%
Multifamily high-rise (222)		.28(X) + 12 76%	2.86 100%	T = 0.3 61%	34(X) + 8. 39%	56 100%
Sr Housing Attached (252)		.20(X) - 0.1 65%		T = 0.2 55%	24(X) + 2. 45%	26 100%
Private School (534)		.85(X) + 22 45%	2.17 100%	0.12 46%	0.14 54%	0.26 100%

The trips generated are shown in Table 5.

TABLE 5
BACKGROUND TRIP GENERATION

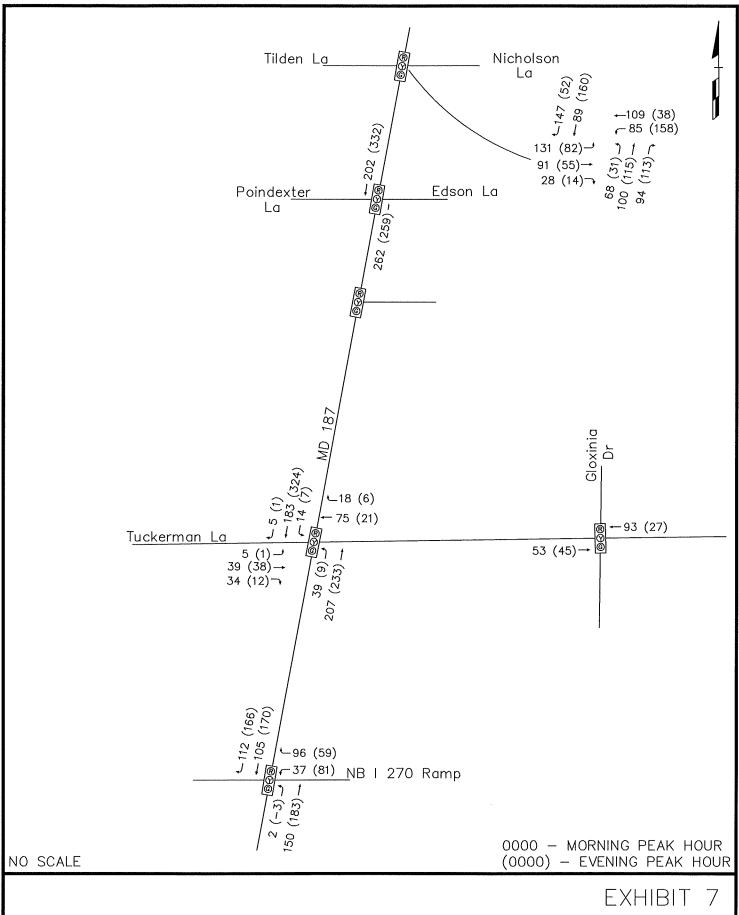
DEVELOPMENT	MORNING PEAK HOUR			EVENING PEAK HOUR		
	<u>IN</u>	OUT	TOTAL	IN	<u>OUT</u>	TOTAL
1. Pike & Rose Trips/143,835 sf retail Less 34% Passby Trips/682,691 sf office Trips/734 du's Total Trips Less 50% ¹	139 0 574 <u>52</u> 765 383	85 0 94 <u>166</u> 345 172	224 0 668 <u>218</u> 1110 555	341 -116 113 <u>157</u> 495 248	370 -126 593 <u>101</u> 938 469	711 -242 706 <u>258</u> 1433 717
2. N Bethesda Center Trips/152,791 sf retail Less 34% Passby Trips/697 du's Trips/809,338 sf office Total Trips Less 50%	141 0 60 <u>677</u> 878 439	87 0 169 <u>110</u> 366 183	228 0 229 <u>787</u> 1244 622	357 -121 174 <u>133</u> 543 272	387 -132 112 <u>697</u> 1064 532	744 -253 286 <u>830</u> 1607 804
3. 6111 Executive Blvd Trips/29,122 sf R&D Less 50%	9 5	3 1	12 6	5 3	29 14	34 17
4. Gables at White Flint Trips/476 du's Trips/20,890 sf retail Less 34% Passby Total Trips Less 50%	35 100 <u>0</u> 135 67	111 62 <u>0</u> 173 87	146 162 <u>0</u> 308 154	104 82 <u>-28</u> 158 79	66 89 <u>-30</u> 125 63	170 171 <u>-58</u> 283 142
5. 6000 Executive Blvd Trips/305,641 sf office 9,300 sf retail97 Less 34% Passby Trips/365 Sr apts Total Trips Less 50%	270 59 0 <u>26</u> 393 197	44 156 0 <u>47</u> 150 75	314 45 0 <u>73</u> 543 272	53 49 -15 <u>50</u> 133 67	276 94 -17 <u>40</u> 348 174	329 -32 <u>90</u> 481 241

¹ Consistent with the traffic statements prepared for development projects with the White Flint sector, the trips generated were reduced by 50%.

TABLE 5
BACKGROUND TRIP GENERATION

DEVELOPMENT	MORI	NING PEA	K HOUR	EVENING PEAK HOUR		
	<u>IN</u>	<u>OUT</u>	TOTAL	<u>IN</u>	OUT	TOTAL
6. N Bethesda Market II Trips/470 du's Trips103,735 sf retail Less 34% Passby Total Trips Less 50%	41 126 <u>0</u> 167 83	115 78 <u>0</u> 193 97	156 204 <u>0</u> 360 180	120 268 <u>-91</u> 297 149	76 290 <u>-99</u> 267 133	196 558 <u>-190</u> 564 282
7. N Bethesda Gateway Trips/614 du's Trips/35,500 sf retail Less 34% Passby Total Trips Less 50%	53 105 <u>0</u> 158 79	150 65 <u>0</u> 215 108	203 170 <u>0</u> 373 187	154 121 <u>-41</u> 234 117	99 132 <u>-45</u> 186 93	253 253 <u>-86</u> 420 210
8. Saul Center Trips/655 du's Trips/136,950 sf office Total Trips Less 50%	56 <u>133</u> 189 95	160 <u>22</u> 182 91	216 <u>155</u> 371 186	164 <u>24</u> 188 94	105 129 234 117	269 <u>153</u> 422 211
Total White Flint Trips	1348	814	2162	1029	1595	2624
9. Luxmanor E.S. Trips/316 students	144	110	254	48	58	106
10. Rock Terrace/Tilden MS Trips/	235	173	408	70	121	191
11. Alef Bet Montessori Scho Trips/90 students	ool 54	45	99	11	12	23
12. Wildwood Center Net change in trips	-33	+10	-23	+14	-11	+3

TABLE 5
BACKGROUND TRIP GENERATION


<u>DEVELOPMENT</u>	MORNING PEAK HOUR			EVENING PEAK HOUR		
	<u>IN</u>	OUT	TOTAL	<u>IN</u>	OUT	TOTAL
13. Rock Spring Center ²						
Trips/844 du's	59	170	229	173	111	284
Trips/549,900 sf office	405	66	471	80	420	500
Trips/210,000 sf retail	112	67	179	320	347	667
Less 34% Passby	0	0	0	109	118	227
Trips/200 room hotel	46	32	78	52	50	102
Trips/90,000 sf theater	<u>10</u>	<u>10</u>	<u>20</u>	<u>521</u>	<u>33</u>	<u>554</u>
Total Trips	632	345	977	1037	843	1880

Trip Distribution

The trip distribution for the planned projects was derived through information provided by the M-NCPPC for the Rockville/North Bethesda super district. The total trips generated by the planned developments are shown in Exhibit 7. Adding these trips to the Existing Traffic Volumes yield the Background Traffic Volumes as shown in Exhibit 8.

The background peak hour traffic volumes shown in Exhibit 5 were subjected to the same capacity analyses procedures using the Highway Capacity Manual technique and the Critical Lane Volume technique as described in M-NCPPC's *LATR/TPAR Guidelines*. The results of the analysis are set forth in Tables 6 and 7. The capacity worksheets are contained in Appendix E.

² Trip generation numbers were taken from the June 27, 2018 LATR study prepared for the Wildwood Manor Shopping Center. The relevant pages are contained in Appendix D.

TRIPS GENERATED BY PLANNED DEVELOPMENTS

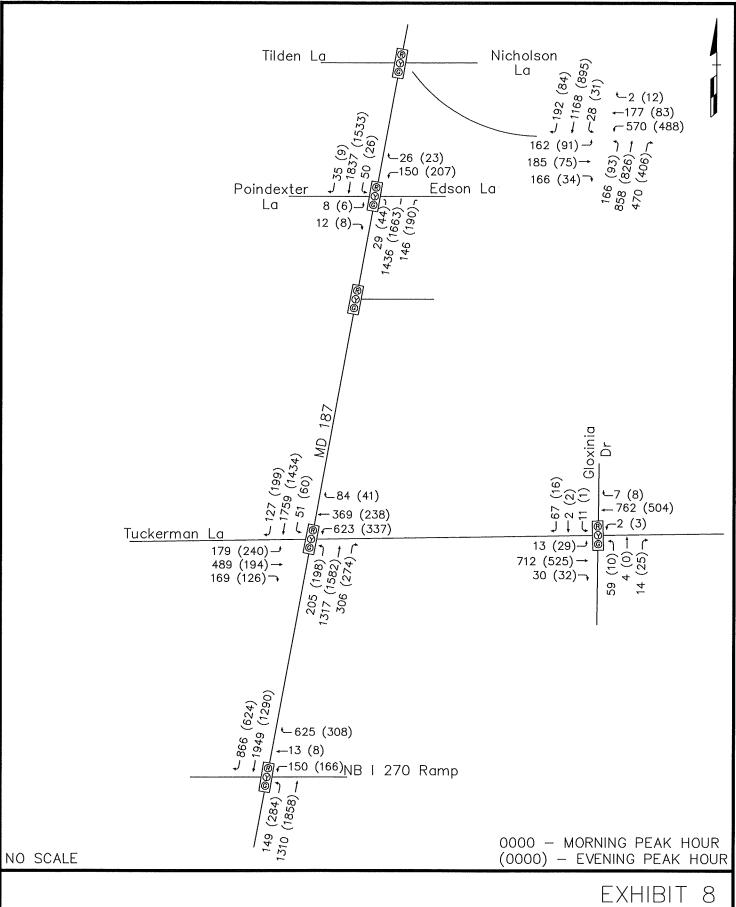


EXHIBIT 8
BACKGROUND TRAFFIC VOLUMES

TABLE 6
HCM CAPACITY ANALYSES RESULTS
(BACKGROUND PEAK HOUR VOLUMES)

	MORNING <u>PEAK HOUR</u>	EVENING PEAK HOUR	CONGESTION STANDARD
MD 187 @ I 270 NB Ramp	(45.7)	(28.6)	71 sec/veh
MD 187 @ Tuckerman La	(67.6)	(38.6)	71 sec/veh
MD 187 @ Edson La-Poindexter	_a (8.5)	(12.6)	71 sec/veh
MD 187 @ Nicholson La-Tilden La	a (51.4)	(33.4)	71 sec/veh
Tuckerman La @ Gloxinia Dr	(34.7)	(41.2)	71 sec/veh

(0000) - (Delay in sec/veh)

TABLE 7
CLV CAPACITY ANALYSES RESULTS
(BACKGROUND PEAK HOUR VOLUMES)

INTERSECTION	MORNING PEAK HOUR	EVENING PEAK HOUR	CONGESTION STANDARD
MD 187 @ I 270 NB Ramp	(662)	(649)	1550
MD 187 @ Tuckerman La	(1626)	(1174)	1550
MD 187 @ Edson La-Poindexter	La (892)	(933)	1550
MD 187 @ Nicholson La-Tilden L	.a (1283)	(868)	1550
Tuckerman La @ Gloxinia Dr	(561)	(337)	1550

(0000) - (Critical Lane Volume)

As shown in Tables 6 and 7, the MD 187/Tuckerman Lane intersection is projected to operate at unacceptable levels during the morning peak hour under Background Traffic Conditions. All of the remaining intersections are projected to operate at acceptable levels of service under Background Traffic Conditions.

SITE TRAFFIC ANALYSIS

Montgomery County Public Schools (MCPS) is proposing to replace the existing Tilden Middle School located at 11211 Old Georgetown Road with a 2,700 student high school. The existing middle school has an enrollment of 947 students for the current 2018-19 academic year. MCPS has a project which will relocate Tilden Middle School to a site located at the Tilden Lane/Marcliff Road intersection. Once the existing middle school has been relocated the site will be cleared and a new 2,700 student high school will be constructed. Initially the school will be used as a holding school for the Northwood High School while that existing school undergoes a major renovation. Once the Northwood High School project has been completed a decision will be made regarding the future use of the Woodward High School site. It could be used as a new high school to relieve crowding at nearby high schools or it could be used as a county wide magnet school. In any event, the school will have a core capacity of approximately 2,700 students.

The existing Tilden Middle School site is located along in the east side of MD 187 just north of Tuckerman Lane. The site is currently served by two (2) access points on MD 187. The north access is restricted to exit only and is controlled with a traffic signal. The south access serves inbound movements; however outbound movements are also allowed. With the construction of the high school it is anticipated that the north access will remain signalized; although it will be moved south to provide more stacking area for the southbound left turn movement. This access will serve as the main access/egress to the site. The south access will serve the bus loop and will be unsignalized. An additional right in/right out access is proposed onto MD 187 near the northern boundary of the site. The proposed lane use at the school access points are shown in Exhibit 9.

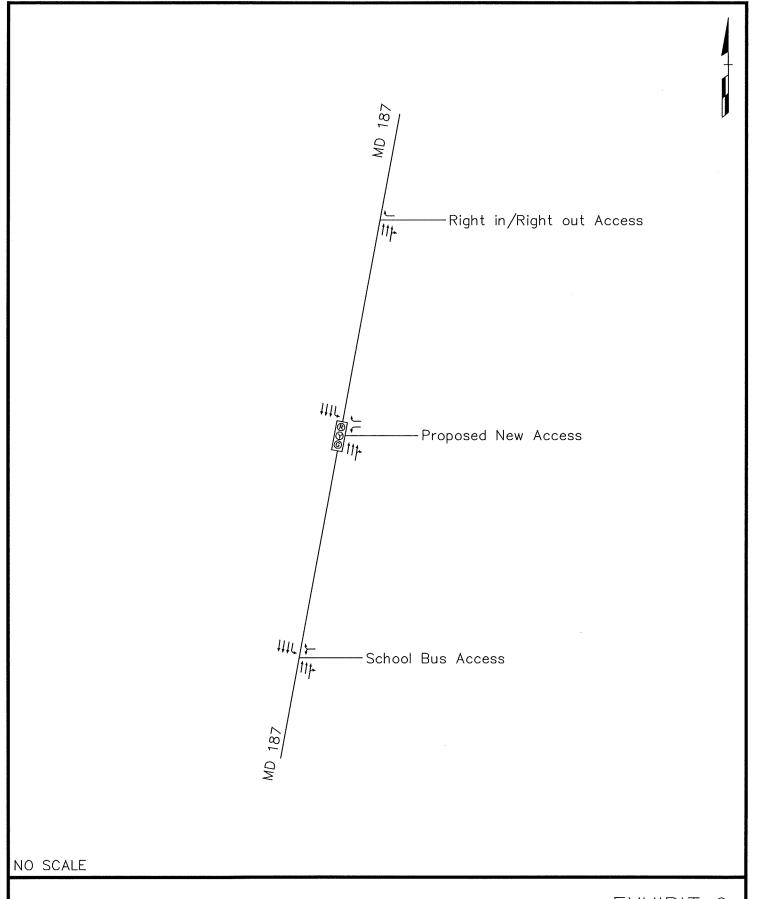
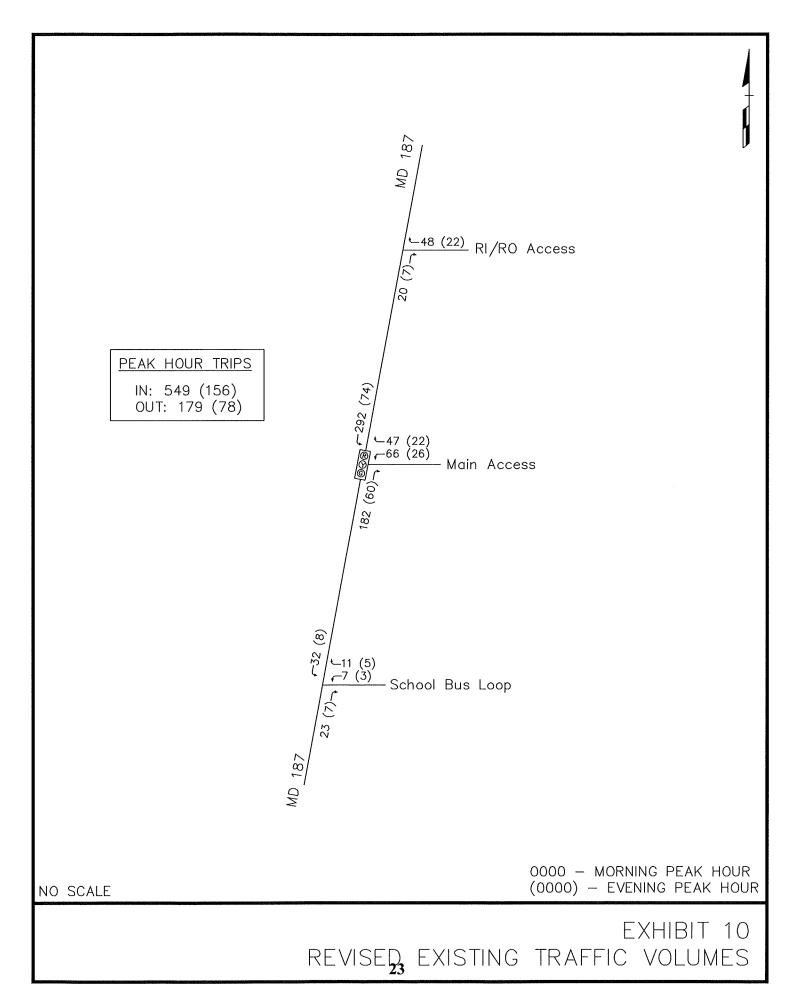


EXHIBIT 9 PROPOSED LANE USE


Trip Generation Analysis

To determine the traffic impacts of the proposed change; the existing driveway volumes were counted and trips were generated for the proposed 2,700 student high school. The existing trips were then subtracted from the trip generated for the 2,700 student high school to determine the new trips generated by this proposal. The results of the trip generation analysis are shown in Table 8.

TABLE 8
TRIP GENERATION
WOODWARD HIGH SCHOOL

LAND USE	MORNING PEAK HOUR			AFTERNOON PEAK HOUR		
	<u>IN</u>	<u>OUT</u>	TOTAL	IN	OUT	TOTAL
Existing School Trips/Site	549	179	728	156	78	234
High School (530)						
Trips/Student	Ln(T)=	0.67Ln(ኦ	()+1.72	Ln(T)=	=0.69Ln(>	<)+1.07
Trips/2,700 Students	<u>756</u>	<u>356</u>	<u>1,112</u>	<u>218</u>	<u>462</u>	<u>680</u>
Net Increase	207	177	384	62	384	446

The existing driveway volumes were adjusted to reflect the revised access to the site. These adjustments are shown in Exhibit 10. The new trips were assigned to the road network based on the existing school boundary for the Tilden Middle School and the net increase in trips are shown in Exhibit 11. These trips were then combined with the Background Traffic Volumes (Exhibit 8) resulting in the Total Traffic Volumes as shown in Exhibit 12. The total traffic volumes were then evaluated using the same methodology as for the previous step. The results of the analyses are shown in Tables 9 and 10. The driveway counts at the existing Tilden Middle School are contained in Appendix F.

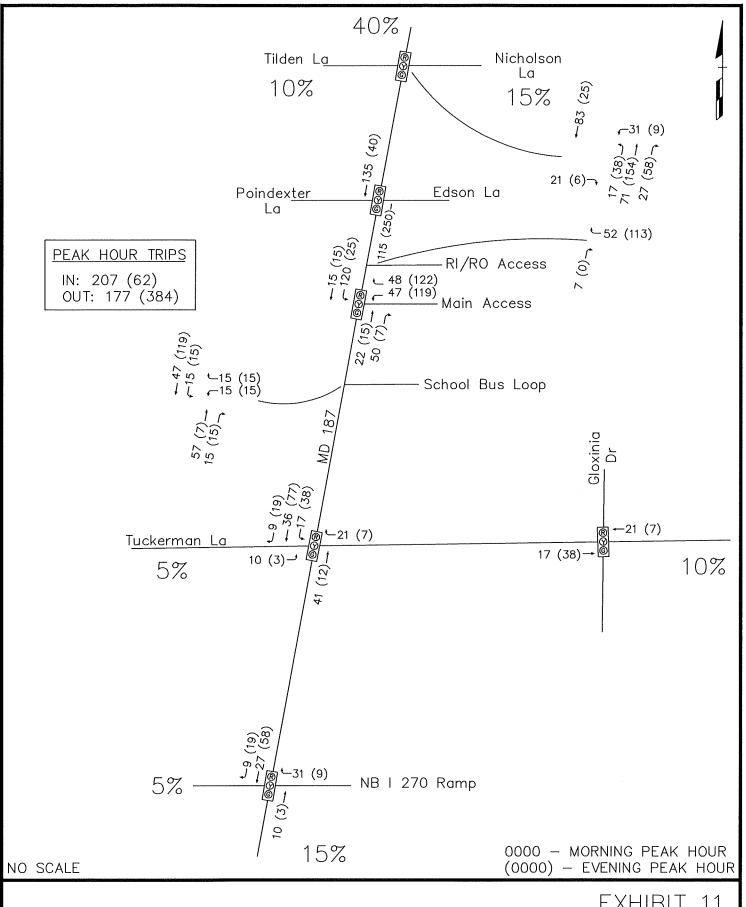


EXHIBIT 11 24 NEW SITE GENERATED TRIPS

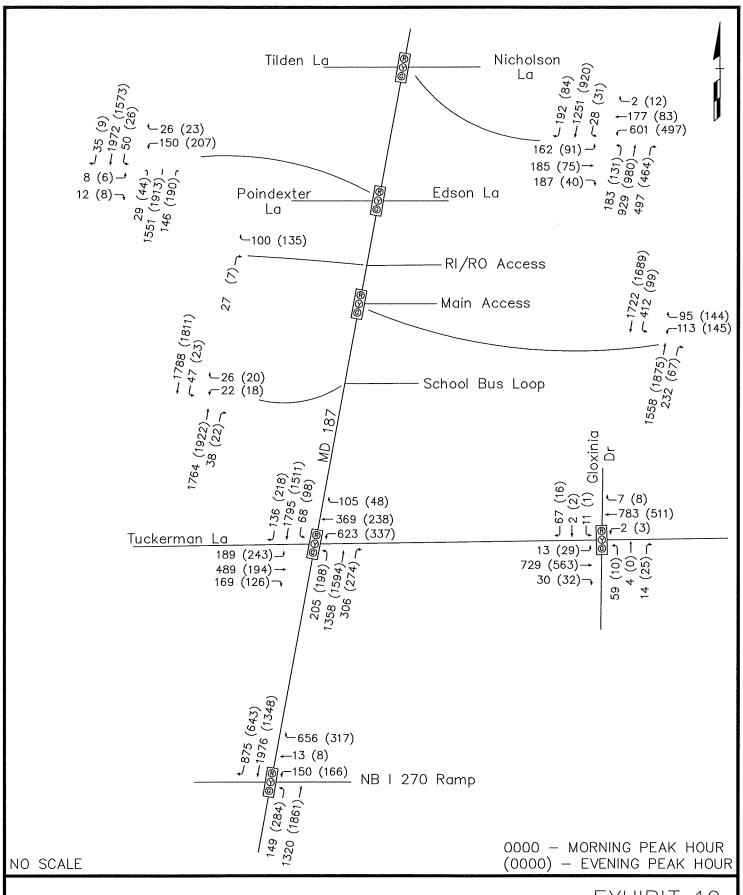


EXHIBIT 12 TOTAL TRAFFIC VOLUMES

TABLE 9
HCM CAPACITY ANALYSES RESULTS
(TOTAL PEAK HOUR VOLUMES)

INTERSECTION	MORNING PEAK HOUR	AFTERNOON PEAK HOUR	CONGESTION STANDARD
MD 187 @ I 270 NB Ramp	(61.2)	(29.4)	71 sec/veh
MD 187 @ Tuckerman La	(69.4)	(40.1)	71 sec/veh
MD 187 @ Edson La-Poindexter	La (8.6)	(13.6)	71 sec/veh
MD 187 @ Nicholson La-Tilden l	₋a (56.2)	(34.4)	71 sec/veh
Tuckerman La @ Gloxinia Dr	(34.3)	(40.6)	71 sec/veh
MD 187 @ Main Access	(19.6)	(11.2)	71 sec/veh
MD 187 @ Bus Loop	(0.5)	(0.4)	71 sec/veh

(0000) - (Delay in sec/veh)

TABLE 10
CLV CAPACITY ANALYSES RESULTS
(TOTAL PEAK HOUR VOLUMES)

INTERSECTION	MORNING PEAK HOUR	AFTERNOON PEAK HOUR	CONGESTION STANDARD
MD 187 @ I 270 NB Ramp	(669)	(650)	1550
MD 187 @ Tuckerman La	(1642)	(1210)	1550
MD 187 @ Edson La-Poindexter	La (942)	(1025)	1550
MD 187 @ Nicholson La-Tilden L	.a (1361)	(957)	1550
Tuckerman La @ Gloxinia Dr	(572)	(355)	1550
MD 187 @ Main Access	(1187)	(963)	1550
MD 187 @ Bus Loop	(736)	(760)	1550

(0000) - (Critical Lane Volume)

As shown in Table 9 all of the critical intersections are projected to operate within the congestion threshold for this policy area. Table 10 shows that the CLV at the MD 187/Tuckerman Lane intersection is above the congestion standard for this policy area; however the congestion standard is the applicable threshold and as a result this intersection is considered to be operating at acceptable levels during both peak hours.

Queuing Analyses

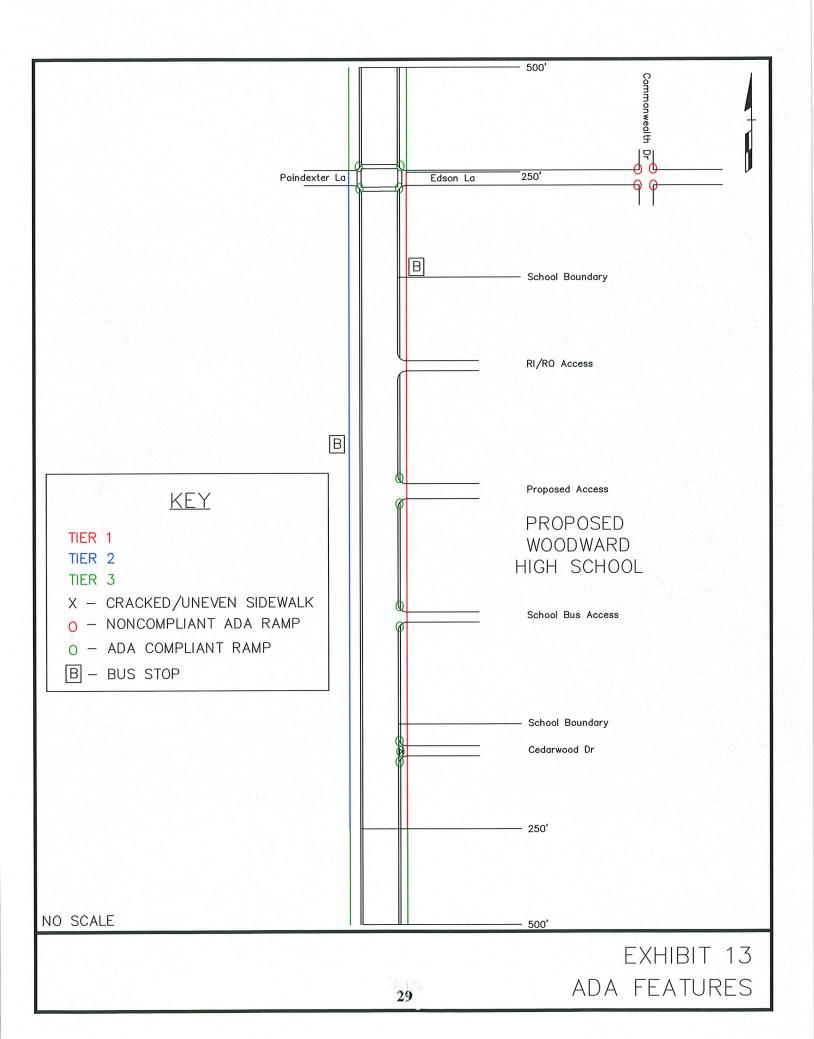
A queuing analyses was performed at the school access points along MD 187 to insure that sufficient storage is provided for the southbound left turn movements. At the MD 187/Main Access intersection the 412 left turns projected under total traffic conditions would require 402 feet of storage ((412 x 100/3600) x 1.4 x 25 = 402) assuming the same 100 second cycle length that currently operates at the signalized intersection. The MD 187/Bus Loop intersection will remain unsignalized and the storage requirements at this location is 59 feet (47 x 1.25 = 59). The MSHA suggested that a SimTraffic analyses would provide a more accurate projection of future queue conditions at this location and requested a SimTraffic analyses be performed. During the peak demand period (AM peak hour) SimTraffic projects that the 95th percentile queue for southbound left turns to be 272 feet. This distance is well within the available distance between the access and Edson Lane-Poindexter Lane.

The SimTraffic worksheet is contained in Appendix H.

PEDESTRIAN/BICYCLE/TRANSIT SYSTEM ADEQUACY

Based on the Tenth Edition ITE trip rates for high schools and the existing trips generated by the site, the increase in trips associated with this proposal is 446 trips during the evening peak hour. The school is in Policy Area 22 so the ITE generated trips were adjusted by the rate adjustment factor for the policy area and as a result the adjusted trip generation is 366 trips ($446 \times 82\% = 366$). The mode split adjustments for the policy area are shown below in Table 11.

TABLE 11
MODE SPLIT ADJUSTMENTS FOR POLICY AREA 3


Total Person Trips	Auto Driver	Auto Passenger	Transit	Pedestrian (Transit + Non-Motorized)	Bicycle (Non-motorized)
100%	62.4%	19.5%	9.4%	9.4%+8.7%	8.7%
587	366	114	55	106	51

Pedestrian System Adequacy

The number of non-motorized trips totals 60 and is greater than the threshold of 50 so a quantitative pedestrian/bicycle analyses is required.

Based on the MCDOT's guidance as outlined in their April 3, 2018 memorandum, the three (3) tiers of ADA facilities for the school are defined as follows and shown on Exhibit 13.

- 1. Establish evaluation tiers. The project specific tiers should be confirmed at the scoping state by the Planning Department, in consultation with MCDOT, before any assessment is done. The following guidance is provided for determining the tiers.
 - a. Tier 1 Primary sidewalk
 - i. The public or private street frontage of the project.
 - ii. The same side of the street up to the nearest public street intersection, or a maximum distance of 250 feet from the project boundary, measured along the street.
 - iii. Approximately 25 feet along each intersecting street within 1.a.i and 1.a.ii.

b. Tier 2 - Connected sidewalk

- i. The same side of the street as the project between the first public road intersection and 250 feet (if applicable), measured along the fronting street.
- ii. The corresponding opposite side of the street as in 1.a.ii and 1.b.i.
- iii. Approximately 25 feet along each intersecting street within 1.b.i, and 1.b.ii.

Tier 3 - Network connections

- i. Between 250 feet and 500 feet, measuring along the fronting street.
- ii. The corresponding opposite side of the street.
- iii. Along both sides of each intersecting street in 1.a and 1.b, up to the next public road intersection or a maximum distance of 500 feet from the project boundary, measured along the street.
- iv. Approximately 25 feet further along each intersecting street identified in 1.c.iii.

2. Adequacy Determination

a. Tier 1

- i. The applicant should identify and fix ADA non-compliance issues with sidewalk, ramps, traffic signals, significant trip hazards, cross slope deviations, and broken, missing, structurally failing sidewalks.
- ii. Beyond the site frontage, the applicant is not required to relocate utilities or traffic signal cabinets, reconstruct utility vaults, relocate fire hydrants, relocate street trees or relocate manhole covers.

b. Tier 2

 The applicant should identify and fix ADA non-compliance issues with sidewalk ramps, traffic signals, significant trip hazards, and missing or structurally failing sidewalks. ii. A minimum recommended contribution of \$100,000 toward ADA compliance may satisfy this requirement.

c. Tier 3

- i. The applicant should identify and fix ADA non-compliance issues with sidewalk ramps, traffic signals, significant trip hazards, and missing or structurally failing sidewalks.
- ii. A minimum recommended contribution of \$50,000 toward ADA compliance may satisfy this requirement.
- 3. For applicants to comply with the pedestrian system adequacy test, the contributions should be placed into a CIP fund for the relevant policy area (if applicable) or the countywide ADA Compliance Transportation CIP (P509325).

The following pedestrian features are present at the study intersections:

ADA Noncompliance Issues

Tier 1 Sidewalks - a five (5) foot wide concrete sidewalk is provided along the east side of MD 187 across the frontage of the school and for a distance of 250 feet, north and south, beyond the property boundary of the school. This width satisfies current ADA standards.

Tier 1 Curb ramps - the ramps at the Cedarwood Drive intersection are ADA compliant. The ramps at the existing school access points are compliant as well. The ramps at the Edson Lane intersection have recently been recontructed and they are now ADA compliant. The ramps at the Edson Lane/Commonwealth Drive intersection are not ADA compliant. The curb ramp survey sheets are contained in Appendix I.

Tier 2 and 3 Sidewalks and ramps - there are no additional sidewalks or ramps within the Tier 2 and Tier 3 portion of the study area.

Pedestrian features at each study intersection are discussed below.

MD 187 @ Nicholson Lane-Tilden Lane - crosswalks are provided across all four legs of this signalized intersection. The crosswalks are supplemented with APS pedestrian signals with count down displays. Ride-On bus route 26 runs along MD 187 in this area and bus stops are located on both sides of MD 187 south of the intersection. Street lights are provided at this intersection.

MD 187 @ Edson Lane-Poindexter Lane - crosswalks are provided across all four legs of this signalized intersection. The crosswalks are supplemented with APS pedestrian signals with count-down displays. Ride-On bus route 26 runs along MD 187 in this area and bus stops are located on east side of MD 187 south of Edson Lane and on the west side of MD 187 north of Poindexter Lane. Street lights are provided at this intersection.

MD 187 @ Tuckerman Lane - crosswalks are provided across the south leg of MD 187 and both legs of Tuckerman Lane at this signalized intersection. The crosswalks are supplemented with APS signals with count-down displays. Ride-On bus route 26 runs along MD 187 in this area and Ride-On bus routes 37 and 96 run along Tuckerman Lane. Bus stops are located on the east side of MD 187 north of Tuckerman Lane and on the west side south of Tuckerman Lane. Street lights are provided at this intersection.

MD 187 @ NB I 270 Ramp - crosswalks are provided across the east and west legs of this signalized intersection. The crosswalks are supplemented with APS signals with count-down displays. No bus stops are located in the vicinity of this intersection. Street lights are provided at this intersection.

Tuckerman Lane @ Gloxinia Drive - crosswalks are provided across all legs of this signalized intersection. All crosswalks are supplemented with APS pedestrian signals with

count down displays. Ride-On bus routes 37 and 96 run along this section of Tuckerman Lane. Bus stops are located on both sides of Tuckerman Lane west of Gloxinia Drive. Street lights are provided along MD 188 in this area.

In addition to the vehicular capacity analyses shown in Tables 9 and 10, crosswalk levels of service at the critical intersections needed to be evaluated to ensure that the crosswalk level of service was D or higher. The results of the crosswalk level of service evaluations are shown in Table 12.

TABLE 12
CROSSWALK EVALUATION

INTERSECTION	MORNING PEAK HOUR	EVENING PEAK HOUR
MD 187 @ Tilden La		
North Leg South Leg East Leg West Leg	C C B B	C C B B
MD 187 @ Edson La		
North Leg South Leg East Leg West Leg	C C B A	C C B A
MD 187 @ Tuckerman La		
South Leg East Leg West Leg	D C C	C C B
MD 187 @ NB I 270 Ramp		
East Leg West Leg	В В	B B

TABLE 12
CROSSWALK EVALUATION
(CON'T.)

INTERSECTION	MORNING PEAK HOUR	EVENING PEAK HOUR
MD 188 @ Bradley Blvd		
North Leg	Α	Α
South Leg	Α	Α
East Leg	В	В
West Leg	В	В

The capacity worksheets are contained in Appendix J.

TABLE 13
PEDESTRIAN CROSSING TIMING EVALUATION

INTERSECTION	WIDTH	AVAILABLE TIME	DESIRED TIME
MD 187 @ Edson La N leg of MD 187 S leg of MD 187 E leg of Edson La W leg of Poindexter La	85 feet 85 feet 50 feet 43 feet	24.5 24.5 15.0 15.0	24.2 24.2 14.3 12.3
MD 187 @ Tilden Dr N leg of MD 187 S leg of MD 187 E leg of Nicholson La W leg of Tilden La	108 feet 100 feet 89 feet 65 feet	39.0 39.0 32.5 32.5	30.9 28.6 25.4 18.6
MD 187 @ Tuckerman La N leg of MD 187 S leg of MD 187 E leg of Tuckerman La W leg of Tuckerman La	94 feet 113 feet 110 feet 89 feet	39.5 39.5 37.5 37.5	26.9 32.3 31.4 25.4
MD 187 @ NB I 270 Ramp E leg of I 270 Ramp W leg of I 270 Ramp	31 feet 31 feet	16.5 16.5	8.9 8.9

TABLE 13
PEDESTRIAN CROSSING TIMING EVALUATION

INTERSECTION	WIDTH	AVAILABLE TIME	DESIRED TIME
Tuckerman La @ Gloxinia Dr	20 foot	16.0	0.0
N leg of Gloxinia Dr S leg of Gloxinia Dr	29 feet 29 feet	16.0 16.0	8.3 8.3
E leg of Tuckerman La	53 feet	16.0	15.1
W leg of Tuckerman La	53 feet	16.0	15.1

The pedestrian crossing timing analyses shows that the available signal timings are adequate.

The average delay experienced by pedestrians at the study intersections was determined using the formulas found in the 2010 HCM. The results of the analyses are shown in Table 14.

TABLE 14
SUMMARY OF PEDESTRIAN ANALYSES
AVERAGE PEDESTRIAN DELAY (sec)

					Average Delay		Average
				Effective Walk	at Respective	Less Weighted	Intersection
Intersection	Leg	Ped Volume	Cycle Length	Time	Leg	by Pedestrians	Delay
							(Pedestrians)
		from count	reference only	reference only	dp=(C-	column C	
					gwalk,mi)2/2C	multiplied by	sum of all legs
						column F	
	North	(0)0	150	NA	NA	(0)0	
	South	(0)0	150	NA	NA	0(0)	
MD 187 @ NB I 270	East	0(0)	150	78	17.3	0(0)	6
	West	0(1)	150	78	17.3	0(17.3)	0(17.3)

TABLE 14
SUMMARY OF PEDESTRIAN ANALYSES
AVERAGE PEDESTRIAN DELAY (sec)
(Con't)

Intersection	Leg	Ped Volume	Cycle Length	Effective Walk Time	Average Delay at Respective Leg	Less Weighted by Pedestrians	Average Intersection Delay (Pedestrians)
		from count	reference only	reference only	dp=(C- gwalk,mi)2/2C	column C multiplied by column F	sum of all legs
	North	0(0)	150	NA	NA	0(0)	
MD 187 @	South	2(1)	150	91.5	11.4	11.4(1.6)	
Tuckerman Lane	East	(9)0	150	63.5	24.9	0(21.3)	11.4(22.9)
	West	(0)0	150	63.5	24.9	0(0)	

TABLE 14
SUMMARY OF PEDESTRIAN ANALYSES
AVERAGE PEDESTRIAN DELAY (sec)
(Con't)

Leg	Ped Volume	Cycle Length	Effective Walk Time	Average Delay at Respective Leg	Less Weighted by Pedestrians	Average Intersection Delay (Pedestrians)
	from count	reference only	reference only	dp=(C- gwalk,mi)2/2C	column C multiplied by column F	sum of all legs
	2(0)	150	61	26.4	2.3(0)	
	1(0)	150	86	13.7	0.6(0)	
	19(15)	150	77.5	17.5	14.5(17.5)	18.2(17.5)
	1(0)	150	77.5	17.5	0.8(0)	

TABLE 14
SUMMARY OF PEDESTRIAN ANALYSES
AVERAGE PEDESTRIAN DELAY (sec)
(Con't)

Intersection	БәЛ	Ped Volume	Cycle Length	Effective Walk Time	Average Delay at Respective Leg	Less Weighted by Pedestrians	Average Intersection Delay (Pedestrians)
		from count	reference only	reference only	dp=(C- gwalk,mi)2/2C	column C multiplied by column F	sum of all legs
	North	2(1)	150	92	11.2	11.2(1.0)	
MD 187 @ Tilden-	South	0(2)	150	92	11.2	0(7.1)	
Nicholson Lane	East	0(3)	150	68.5	22.1	0(6.0)	11.2(14.1)
	West	(0)0	150	68.5	22.1	0(0)	

TABLE 14
SUMMARY OF PEDESTRIAN ANALYSES
AVERAGE PEDESTRIAN DELAY (sec)
(Con't)

Intersection	Leg	Ped Volume	Cycle Length	Effective Walk Time	Average Delay at Respective Leg	Less Weighted by Pedestrians	Average Intersection Delay (Pedestrians)
		from count	reference only	reference only	dp=(C- gwalk,mi)2/2C	column C multiplied by column F	sum of all legs
	North	11(8)	100	28	25.9	10.2(13.0)	
Tuckerman Lane	South	2(1)	100	28	25.9	1.9(1.6)	
@ Gloxinia Drive	East	3(1)	100	48	13.5	1.4(0.8)	19.3(20.5)
	West	12(6)	100	48	13.5	5.8(5.1)	

Bicycle System Adequacy

Since this proposed expansion will generate more than 50 bicycle peak hour trips a bicycle analysis is required. The level of traffic stress (LTS) for bicyclists along MD 187 in the vicinity and along Edson Lane is Red or high stress level. The County Master Plan for Bikes addresses this stress level via shared roadway routes along Luxmanor Road and separated bikeways along the east side of MD 187 and along Edson Lane. Given the nature of MD 187 as a Major Highway in this area, this is an appropriate plan and MCPS supports this. MCPS will construct the bikeway across the frontage of the site along MD 187.

Transit System Adequacy

For traditional land uses the number of transit trips would be more than the threshold of 50 a quantitative transit analysis would be required. However since the proposed use is a public school and the majority of the users would be eligible for free public transit (school buses) it was determined that a more appropriate measure of this sites transit impact should be tied to staff levels rather than the total number of trips generated by the site.

The school will employ 212 teachers/staff. Nearly all of these employees will be onsite before the morning peak hour (7:30 to 8:30 AM) and will remain on-site until after the evening peak hour (2:15 to 3:15 PM). However, to present a very conservative projection of transit impacts, it was assumed that 30% of the staff would arrive during the peak hours. This would translate to 64 staff members per peak hour. Once again if all of these 64 staff members were converted to person trips, the 9.4% transit rate for this policy area would equate to 6 transit trips which is far below the 50 trip threshold for a quantitative transit analyses.

The nearest bus stops to the site are located along the east side of MD 187 at the northern property boundary and on the west side of MD 187 opposite of the school. The stops serve Ride On route 26. The information for Ride On route 26 is enclosed in Appendix L.

CONCLUSIONS

A traffic impact study was prepared in accordance with the guidelines published by M-NCPPC for Mandatory Referrals, for projects undertaken by public agencies. The proposed conversion of the Tilden Middle School to the Woodward High School falls within the parameters of these guidelines.

After collecting current traffic count data at 7 intersections including the existing access points to the Tilden Middle School, it was determined that under existing traffic volumes all of the intersections that were analyzed as part of the LATR study operate within the Congestion Standard for the North Bethesda Policy Area of 71 seconds of vehicle delay or less during the peak hours of school traffic.

The analysis then proceeded to generate trips for planned developments and the trips generated by the conversion of the middle school to a high school. The results of the analyses demonstrate, as shown in Table 9, that all of the critical intersections are projected to continue to operate within the 71 second threshold permitted by the Congestion Standard for the Policy Area during the peak hours.

As required by the *LATR/TPAR Guidelines*, pedestrian facilities in the area were also evaluated. The area in which the school is located is a mature neighborhood with continuous sidewalks along the majority of the area roadways to encourage pedestrian traffic to the school. The signalized intersections in the study area are equipped with push-button controlled pedestrian signals to cross the major roadways. There were some ADA deficient intersections within a 500 foot radius of the school boundary and these will be addressed with the existing CIP fund designed to fund improvements associated with public schools.

APPENDIX A TRAFFIC STUDY SCOPE OF WORK AGREEMENT

Local Area Transportation Review

TRANSPORTATION IMPACT STUDY SCOPE OF WORK AGREEMENT

Contact Information						
Transportation Consultant (company, contact name, email, and phone number)	Mike Nalepa Street Traffic Studies mnalepa@streettrafficstud 410 590 5500	ies.com	!		4	
Name of Applicant / Developer	Montgomery County Public	: Schoo	ls			
Project Information	Inclu	de Tab	oles/Grap	hics, As Need	ded	
Project Name (include plan no. if known)	Woodward High School					
Project Location (include address if known)	11211 Old Georgetown Road,	Rockvil	le, MD 2085	52		
Policy Area(s) (subdivision staging policy map)	North Bethesda		Master P Sector P	Plan(s) / lan Area(s)		
Application Type(s)	□ Preliminary Plan	□ Sit	te Plan	□ Sketch/Cond Preliminary		☐ Amendment
Application Type(s)	☐ Conditional Use (formerly special exception) ☐ Local Map Amendment ☐ APF at Building Permit ☐ Other: ☐ MR					
Project Description & Previous Approvals (proposed land uses, zoning, no. of units, square footage, construction phasing, prior approvals and proposals, existing uses, site operations, year built, status of Adequate Public Facilities [APF], other relevant info)	The existing Tilden Middle to a new facility and Wood School has a current enroll will have a core capacity of Currently the school is servill add a third access point This project is in the preling available. It is the intent of the detailed concept phase	lward H lment of f 2,700 ved by the nt on Ol ninary of the tra	ligh Schoo f 947 stud students. two access ld Georget concept ph	will be constreents and the personal points on Oldown Road. ase and a deta	ucted on the proposed Woo Georgetown ailed concept	site, Tilden Middle odward High School n Road. This proposal
1.Site Access (proposed access location(s), existing/adjacent/opposite curb cuts, interparcel connections, access configurations and restrictions, internal circulation, private roads, parking/loading areas, other relevant info)	It is anticipated that the ex relocated to the southernn changes will be identified t	nost acc	cess for th	e Woodward F		

	Transp	ortation Im	pact Stud	dy		Fransportation Stud Statement	y Exemption
2.Transportation Analysis Requirement	Generates 50 c hour person tri bicycle, and/or reductions othe developments outside of the Policy Areas. F form and inclu- study appendix	ps (vehicula pedestrian) er than a cre over 12 yea White Flint a ill out remai de in transp	r, transit, with no edit for exi rs old, <u>AW</u> and White nder of thi	sting <u>O</u> is Oak	hour per and/or p than a c 12 years Oak Poli generati	es 49 or fewer total was a son trips (vehicular, to be destrian) with no repredit for existing developments old, <u>OR</u> within White cy Areas. Fill out PAR on sections below, aron statement.	transit, bicycle, eductions other elopments over e Flint and White and trip
3.Policy Area Review (PAR)	☐ TP/ (1/1/13 – 12 0, 25, 50%:	AR 2/31/16)	(11/15/0° 0-50%		31/12)	☐ Exempt (no squincrease or fewer the or 1/1/17 or later)	an 3 new trips)
Only for projects filed before 1/1/17	(TPAR = Transpor Area Review)		(PAMR = Po Review)			☐ No PAR (7/1/0: ☐ PATR (before 6 (PATR = Policy Area T	5/30/03)
4.Transportation Mitigation Agreement (TMAg) Required?	□ No	☐ Yes (25+ Emplo Managemen			ortation	☐ Amend Existing	g TMAg
5.Established Trans- portation Management District (TMD)?	□ No	□ Yes	TMD Na	ame: _			
Transportation Impact 9	Study Assum	ptions		Inc	clude Tal	bles/Graphics, As N	Veeded
6.Study Years / Phases	Existing Year:	2018	Phases / E	Build-ou	ıt Year(s)	: 2021	
7.Study Periods	□ AM □ PI	M □ Mid	-day □	Saturd	lay 🗆	Sunday □ Other:	
	For the purpose	ersections to	o study (re	efer curi	rent LATR	Guidelines):	2
8.Study Intersections	subject site shou	ld also includ	le nearby ur	nbuilt pro	operties in	common ownership. No isting developments ove	ulation for the o trip reductions
8.Study Intersections (For projects generating 50 or more person trips, list all	subject site shou	ld also includ in this calcula	le nearby ur ntion other t	nbuilt pro	operties in redit for ex	common ownersnip. No isting developments ove erman La @ Gloxinia	ulation for the o trip reductions er 12 years old.
(For projects generating 50 or more person trips, list all signalized & significant	subject site shou should be taken	dd also includ in this calcula ïlden La	le nearby ur ntion other t	nbuilt pro	operties in redit for ex	risting developments over	ulation for the o trip reductions er 12 years old.
(For projects generating 50 or more person trips, list all signalized & significant unsignalized intersections, and site driveways traffic counts	subject site shou should be taken 1) MD 187 @ T	eld also includ in this calcula iilden La oindexter La	le nearby ur ntion other t	nbuilt pro	operties in redit for ex 7) Tuck	risting developments over	ulation for the o trip reductions er 12 years old.
(For projects generating 50 or more person trips, list all signalized & significant unsignalized intersections, and site driveways traffic counts must be collected within 12-months of completed and	subject site shou should be taken 1) MD 187 @ T 2) MD 187 @ P	old also includ in this calcula Tilden La Oindexter La Iorth Tilden	de nearby ur ntion other t a MS Drivew	nbuilt pro than a cr uay	pperties in redit for ex 7) Tuck 8)	risting developments over	ulation for the o trip reductions er 12 years old.
(For projects generating 50 or more person trips, list all signalized & significant unsignalized intersections, and site driveways traffic counts must be collected within 12-	subject site shou should be taken 1) MD 187 @ T 2) MD 187 @ P 3) MD 187 @ N	old also includin this calculariden La oindexter La lorth Tilden outh Tilden	de nearby ur ntion other t a MS Drivew MS Drivew	nbuilt pro than a cr uay	operties in redit for ex 7) Tuck 8) 9)	risting developments over	ulation for the o trip reductions er 12 years old.
(For projects generating 50 or more person trips, list all signalized & significant unsignalized intersections, and site driveways traffic counts must be collected within 12-months of completed and	subject site shou should be taken at 1) MD 187 @ T 2) MD 187 @ P 3) MD 187 @ N 4) MD 187 @ S	ild also includin this calcularin this calcularin this calcularin this calcularin this calcularing the control of the control	de nearby ur ntion other t a MS Drivew MS Drivew a	nbuilt pro than a cr uay way	perties in redit for ex 7) Tuck 8) 9) 10) 11)	re rows if necessary	ulation for the or trip reductions er 12 years old. Dr
(For projects generating 50 or more person trips, list all signalized & significant unsignalized intersections, and site driveways traffic counts must be collected within 12-months of completed and	subject site show should be taken at 1) MD 187 @ T 2) MD 187 @ P 3) MD 187 @ N 4) MD 187 @ S 5) MD 187 @ T	id also includin this calcularin this calcularin this calcularin this calcularin this calcularing the calcularing the calcularing the calcularing the calcular this calcul	de nearby ur ntion other t a MS Drivew MS Drivew a	nbuilt pro than a cr vay vay	perties in redit for ex 7) Tuck 8) 9) 10) 11)	erman La @ Gloxinia re rows if necessary	ulation for the o trip reductions er 12 years old.
(For projects generating 50 or more person trips, list all signalized & significant unsignalized intersections, and site driveways traffic counts must be collected within 12-months of completed and accepted application)	subject site show should be taken at 1) MD 187 @ T 2) MD 187 @ P 3) MD 187 @ N 4) MD 187 @ S 5) MD 187 @ T 6) MD 187 @ N Total Person	ild also includin this calculation this calculation that calculation the calculation that calculate the calculate the calculate that calculate the calculate the calculate that calculate the calculate the calcu	de nearby ur ntion other t MS Drivew MS Drivew a I 270 Ram e Trips*	nbuilt pro than a cr vay vay	perties in redit for ex 7) Tuck 8) 9) 10) 11) add mo	re rows if necessary Walking Trips* (non-motorized +	ulation for the potrip reductions er 12 years old. Dr Bicycling Trips*

10.Trip Reductions (include justification and supporting documentation for internal capture, pass-by, diverted, Transportation Demand	None
Management) 11.Trip Distribution % (include a map of the proposed project in addition to a list or table)	Based on the existing volumes and the attached service area map for Walt Whitman High School, we propose the following trip distributions: 40% N on MD 187 10% W on Tilden Lane 15% E on Nicholson La 10% E on Tuckerman La 5% W on Tuckerman La 15% S on MD 187 5% N on I 270
12.Pipeline Developments to be considered as background traffic (include name, plan #, land uses, and sizes for approved but unbuilt developments or concurrently pending applications; info can be obtained from the M-NCPPC Pipeline website: - website is updated quarterly)	Pipeline development data will be updated and provided by the M-NCPPC.
13. Pipeline Transportation Projects to be considered as background condition (fully funded for construction in County Capital Improvement Program, State Consolidated Transportation Program, developer projects, etc. within the next 6 years)	None

Preliminary Mitigatio	n Analysis *Refe	to the LATR Guidelines for details on how to mitigate
14.Vehicular Analysis	Vehicular Analysis Anticipated (Vehicular mitigation to be determined after study)	TEST: HCM Analysis is required to be provided for all intersections analyzed in studies for: 1) "Red & Orange" policy areas, and 2) intersections with a CLV of more than 1,350 in "Yellow & Green" policy areas. 3) CLV analysis required for all intersections regardless of policy area. CLV assessment and signal timing worksheets are to be included in the study appendix. MITIGATION: Required if HCM delay analyses exceed policy area standard
15.Pedestrian Analysis	Pedestrian Mitigation Anticipated	TEST: If the plan generates 50 or more pedestrian peak hour trips, mitigation of surrounding pedestrian conditions is required MITIGATION: Required if ADA non-compliance issues within 500 foot radius of site boundary and if pedestrian crosswalk delay at LATR intersections within 500 feet of site boundary is lower than Level of Service (LOS) D
16.Bicycle Analysis	Bicycle Mitigation Anticipated	TEST: If the plan generates 50 or more bicycle peak hour trips and is within 0.25 miles of an existing educational institution or existing/planned bikeshare station, mitigation of surrounding bicycle conditions is required MITIGATION: Required to make improvements to provide a low Level of Traffic Stress to any existing similar facility within 750 feet of the site boundary; Alternatively, project may provide a master planned improvement that provides an equivalent improvement in the level of traffic stress for cyclists
17.Transit Analysis	Transit Mitigation Anticipated	TEST: If the plan generates 50 or more transit peak hour trips and the peak load of bus routes at bus stops within 1,000 feet of site boundary exceeds (or is worse than) peak load of LOS D (1.25 transit riders per seat during the peak period in the peak direction), mitigation of transit conditions is required MITIGATION: Required to provide or fund improvements that would mitigate the trips exceeding the standard that are attributable to the development
Additional Analysis or Software Required	☐ Queuing Analysis☐ Signal Warrant Analysis☐ Weaving/Merge Analysis	☐ Accident Analysis ☐ VISSIM ☐ CORSIM ☐ CORSIM ☐ SIDRA ☐ Other

M-NCPPC Clarifications

- Transportation impact study will comply with all other requirements of the LATR Guidelines not listed on this form.
- If physical improvements are proposed as mitigation, the transportation impact study will demonstrate feasibility with regards to right-of-way and utility relocation (at a minimum).
- In the event that the development proposal significantly changes after this transportation impact study scope has been agreed to, the Applicant will work with M-NCPPC staff to amend the scope to accurately reflect the new proposal.
- A receipt from MCDOT showing that the transportation impact study review fee has been paid will be provided to M-NCPPC DARC at the time the development application is submitted.
- Minimum of seven paper copies (more if near the County line or an incorporated City) and two PDF copies of the transportation impact study and appendices will be provided.

Additional Assumptions / Special Circumstances for Discussion					

Site Trip Ge	neration Estin	nate Worksheet		
Step 1: Vehicle Trips				
ITE Land use Code	530			
Development Size			ı	
ITE trip generation estimate formula/rate* AM		Total AM Vehicle Trips		384
ITE Trip generation estimate formula/rate* PM		Total PM Vehicle Trips	4	446
Step 2: Policy Area Conversion				
Policy Area # & Name	22 N Bethesda	Trip Adjustment Factor	82	%
Applied Policy Area Adjusted Value AM				
Applied Policy Area Adjusted Value PM	366			
Step 3: Mode Split			AM	PM
Auto Driver	62.4%	Results	587	
Auto Passenger	19.5%	Results	114	
Transit	9.4 %	Results	55	
Walking (transit + non-motorized)	18.1%	Results	106	
Bicycling (non-motorized)	8.7%	Results	51	

Complete one of these tables for EACH use included in the application. Enter results into "Transportation Impacts Analysis" section of the form.

High School (530)

Vehicle Trip Ends vs: Students

On a: Weekday,

AM Peak Hour of Generator

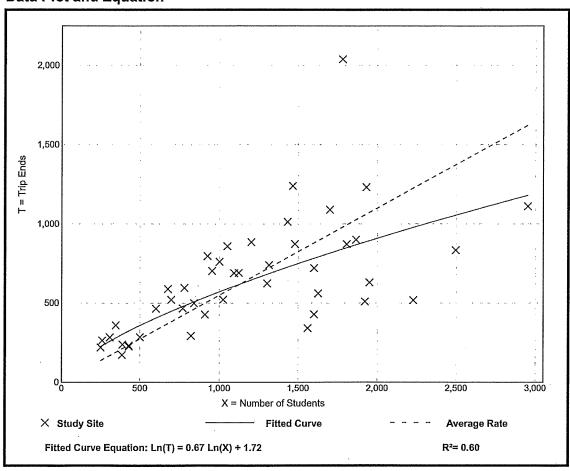
Setting/Location:

General Urban/Suburban

Number of Studies:

Avg. Num. of Students:

1177


Directional Distribution:

68% entering, 32% exiting

Vehicle Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.55	0.22 - 1.15	0.23

Data Plot and Equation

High School (530)

Vehicle Trip Ends vs: Students

On a: Weekday,

PM Peak Hour of Generator

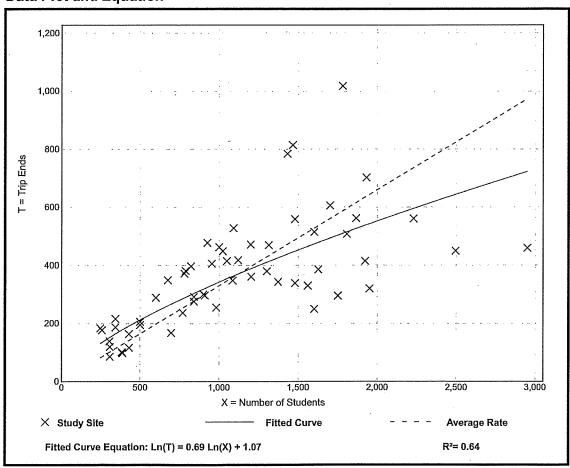
Setting/Location:

General Urban/Suburban

Number of Studies:

Avg. Num. of Students:

1127


Directional Distribution:

32% entering, 68% exiting

Vehicle Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.33	0.16 - 0.74	0.13

Data Plot and Equation

Tilden Middle School - #232

Cluster Name: Walter Johnson School Hours: 8:15 - 3:00

11211 Old Georgetown Road Rockville, MD 20852 www.montgomeryschoolsmd.org/schools/tildenms/

Feeder Schools: Farmland, Garrett Park, Luxmanor

Office Phone: (301) 230-5930 Fax Number: (301) 230-5991 Receiving Schools: Walter Johnson

	% Total	% Ge	ender	% Racial/Ethnic Composition¹ ²							Enr	ollment by G	rade
	76 TOTAL	Female	Male	AM	AS	BL.	Н	PI	WH	MU		Number	Percent
All Students		46.8	53.2	≤5.0	16.9	11.1	18.2	≤5.0	47.7	5.7	Grade 6	309	32.6
ESOL	11.3	5.4	5.9	≤5.0	≤5.0	≤5.0	≤5.0	≤5.0	≤5.0	≤5.0	Grade 7	325	34.3
FARMS	12.1	6.1	6.0	≤5.0	≤5.0	≤5.0	5.5	≤5.0	≤5.0	≤5.0	Grade 8	313	33.1
SPED	15.5	≤5.0	11.2	≤5.0	≤5.0	≤5.0	≤5.0	≤5.0	8.0	≤5.0	Total	947	

¹ Racial/ethnic composition figures reflect MSDE abbreviations: American Indian or Alaskan Native (AM); Asian (AS); Black or African American (BL); Hispanic/Latino (HI); Native Hawaiian or Other Pacific Islander (PI); White (WH); Two or More (Multiple) Races (MU).

	Students with Disabilitie	s Least Restrictive Environment (LRE)				
Percent of Instructional Time Inside a General Education Class						
	80% or More	Between 40% and 79%	Less than 40%			
All SPED Students	40.8	38.8	20.4			

Other Participation

Students now or have in the past received FARMS² = 22.5%

Attendance Rate^{2 3} = ≥95.0%

Mobility Rate (Entrants + Withdrawals) $^{2 \ 3} = 11.1\%$

Suspension Rate^{2 3 4} = ≤3.0%

School Programs

Adapted Physical Education

Alternative Level I

Autism - Asperger's

Character Education Programs

Collaborative Problem Solving (CPS)

Counseling Programs/Groups

Hours Based Staffing - Middle

Learning for Independence (LFI)

Mentoring Programs

Red Ribbon Anti-Substance Abuse Program

Speech Resource K-12

Student Ambassador Program

		-
Study Ci	rcle	e

Teaching Tolerance Mix It Up

Visitor Management System

		Sta	ff Diversity	,					
	% Racial/Ethnic Composition¹						% Gender		
	AS	BL	HI	WH	MU	Female	Male		
Professional	8.0	10.7	4.0	74.7	2.7	66.7	33,3		
Supporting Services	23.7	21.1	18.4	36.8	0.0	65.8	34.2		

	AS	BL	HI	WH	MU	Female	Male	Number		
Professional	8.0	10.7	4.0	74.7	2.7	66.7	33.3	of Classes	% HQ	% No
Supporting Services	23.7	21.1	18.4	36.8	0.0	65.8	34.2	D.t.		1
Student/Instructio	nal Staff Ra	tio		Avera	ge Class Siz	е			re not availab · 2017 school	

Student/Instructional Staff Ratio	Averag	e Class Size
11.4	English = 16.4	Other = 17.0

ses Taught b lified (HQ) T	
% HQ	% Not HQ
	lified (HQ) T

	Years Experience of Professional Personnel	
% Less Than 5 Years	% 5–15 Years	% More Than 15 Years
18.7	36.0	45.3

To comply with federal requirements, any percentage rates greater than or equal to 95.0% or less than or equal to 5.0% (3% for suspensions) will be noted as ≥95.0 or \leq 5.0 (\leq 3.0 for suspensions), respectively.

Outcome data reflect 2016-2017 school year.

⁴ Results are not reported (--) for groups with fewer than ten students enrolled.

APPENDIX B VEHICLE TURNING MOVEMENT COUNTS

STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD

Location: Date :

Montgomery County 02/26/2019 Day:

Tuesday

STREET TRAFFIC STUDIES

Intersection of: and: Counted by:

Old Georgetown Rd I-270 Northbound Ramps

Weather: Entered by: Clear SKN

)	1	U	\boldsymbol{D}
	Т	D	

Counted by:		CB/ET						Entered I		SKN						LTD		
	 TRAFFI on:	C FROM	NORTH			IC FROM Old Ge	SOUTH	Rd		IC FROM		np	TRAF on:	FIC FROI I 270 N	M EAST B Off Ran	np	TOTAL N+S	
TIME 	 RIGHT	THRU		TOTAL	LEFT		RIGHT	TOTAL				TOTAL	LEFT	THRU		TOTAL	+ E+W 	
																		-
06:30-45	45	230	0	275	13	79	0	92	0	0	0	0	13	0	41	54	l 421	!
45-00	84	312	0	396	16	111	0	127	0	0	0	0	18	0	53	71	594	1
07:00-15	142	396	0	538	13	144	0	157	0	0	0	0	25	2	61	88	783	1
15-30	198	458	0	656	15	194	0	209	0	0	0	0	37	1	95	133	998	1
30-45	231	504	0	735	33	305	0	338	0	0	0	0	33	4	118	155	1228	-
45-00	1 156	449	0	605	32	302	0	334	0	0	0	0	36	2	164	202	1141	ł
08:00-15	183	450	0	633	45	301	0	346	0	0	0	0	20	6	148	174	1153	<u> </u>
15-30	184	441	0	625	37	252	0	289	0	0	0	0	24	1	99	124	1038	}
30-45	185	448	0	633	38	258	0	296	0	0	0	0	54	0	135	189	1118	1
45-00	182	425	0	607	47	307	0	354	0	0	0	0	66	7	80	153	1114	ł
09:00-15	192	389	0	581	33	261	0	294	0	0	0	0	25	2	82	109	984	1
15-30	179	384	0	563	46	267	0	313	0	0	0	0	43	4	81	128	1004	ŀ
15-30 AM	179	304	U	303	40	207	U	313	U	U	U	U	43	4	01	120	1004	1
3 HOUR	1																! !	<u> </u>
TOTALS 1 HOUR	 1961 	4886	0	6847	368	2781	0	3149	0	0	0	0	394	29	1157	1580	 11576 	
TOTALS	!								_		_							!
630-730	469	1396	0	1865	57	528	0	585	0	0	0	0	93	3	250	346	2796	
645-745	655	1670	0	2325	77	754	0	831	0	0	0	0	113	7	327	447	3603	!
07-08	727	1807	0	2534	93	945	0	1038	0	0	0	0	131	9	438	578	4150	!
715-815	768	1861	0	2629	125	1102	0	1227	0	0	0	0	126	13	525	664	4520	!
730-830	754	1844	0	2598	147	1160	0	1307	0	0	0	0	113	13	529	655	4560	!
745-845	708	1788	0	2496	152	1113	0	1265	0	0	0	0	134	9	546	689	4450	!
08-09	734	1764	0	2498	167	1118	0	1285	0	0	0	0	164	14	462	640	4423	ļ.
815-915	743	1703	0	2446	155	1078	0	1233	0	0	0	0	169	10	396	575	4254	!
830-930	738	1646	0	2384	164	1093	0	1257	0	0	0	0	188	13	378	579	4220	DIITE
PEAK HOUR 730-830	 754	1844	0	2598	147	1160	0	1307	0	0	0	0	113	13	529	655	 4560	0.93
PM	!																ŀ	10.10
02:00-15	106	286	0	392	38	248	0	286	0	0	0	0	8	0	51	59	737	1
1 15-30	116	258	0	374	51	330	0	381	0	0	0	0	26	1	60	87	842	1
30-45	110	293	0	403	75	475	0	550	0	0	0	0	23	2	60	85	1038	ŀ
1 45-00	101	266	0	367	77	431	0	508	0	0	0	0	16	4	60	80	955	1
03:00-15	131	303	0	434	84	439	0	523	0	0	0	0	20	1	69	90	1047	1
15-30	111	318	0	429	83	516	0	599	0	0	0	. 0	16	1	89	106	1134	i
30-45	97	319	0	416	122	490	0	612	0	0	0	0	23	5	76	104	1132	i
45-00	79	255	0	334	130	529	0	659	0	0	0	0	7	2	67	76	1069	i
04:00-15	122	290	0	412	132	617	0	749	0	0	0	0	23	0	52	75	1236	i
15-30	106	256	0	362	128	611	0	739	0	0	0	0	6	0	50	56	1157	i
30-45	112	277	0	389	95	624	0	719	0	0	0	0	12	6	67	85	1193	i
45-00 PM	116	271	0	387	95	656	0	751	0	0	0	0	14	2	89	105	1243	i
3 HOUR TOTALS 1 HOUR	 1307 	3392	0	4699	1110	5966	0	7076	0	0	0	0	194	24	790	1008	 12783 	
TOTALS										-	_	12						ļ
02-03	433	1103	0	1536	241	1484	0	1725	0	0	0	0	73	7	231	311	3572	011.0
215-315	458	1120	0	1578	287	1675	0	1962	0	0	0	0	85	8	249	342	3882	PAPE
230-330	453	1180	0	1633	319	1861	0	2180	0	0	0	0	75	8	278	361	4174	
245-345	440	1206	0	1646	366	1876	0	2242	0	0	0	0	75	11	294	380	4268	0.93
03-04	418	1195	0	1613	419	1974	0	2393	0	0	0	0	66	9	301	376	4382	!
315-415	409	1182	0	1591	467	2152	0	2619	0	0	0	0	69	8	284	361	4571	!
330-430	404	1120	0	1524	512	2247	0	2759	0	0	0	0	59	7	245	311	4594	Į.
345-445	419	1078	0	1497	485	2381	0	2866	0	0	0	0	48	8	236	292	4655	I
04-05	456	1094	0	1550	450	2508	0	2958	0	0	0	0	55	8	258	321	4829	1
PEAK HOUR	1 450	1001	•	4550	450	0500		2050			0	0	r.r		050	204	1 4000	1
04-05	456	1094	0	1550	450	2508	0	2958	0	0	0	0	55	8	258	321	4829	I

STSLTD STSLTD STSLTD STSLTD STSLTD

Intersection of:

Counted by:

and:

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD

VEHICLE TURNING MOVEMENT COUNT - SUMMARY Old Georgetown Rd

Location: Date

Montgomery County 02/26/2019 Day:

Tuesday

STREET TRAFFIC STUDIES

I-270 NB Ramps CB/ET bikes only Weather: Entered by: Clear SKN

LTD

TRAFFIC FROM NORTH TRAFFIC FROM SOUTH TRAFFIC FROM WEST TRAFFIC FROM EAST TOTAL Old Georgetown Rd on: Old Georgetown Rd on: I-270 N On Ramp I-270 N Off Ramp N + Son: TIME E+W RIGHT THRU LEFT **TOTAL** LEFT THRU RIGHT TOTAL **RIGHT** THRU LEFT **TOTAL** LEFT THRU RIGHT TOTAL AM 06:30-45 n n 45-00 07:00-15 15-30 30-45 45-00 08:00-15 15-30 30-45 45-00 09:00-15 15-30 AM 3 HOUR **TOTALS** 1 HOUR TOTALS 630-730 645-745 07-08 n 715-815 730-830 745-845 08-09 815-915 830-930 PEAK HOUR 645-745 PM 02:00-15 15-30 30-45 45-00 03:00-15 15-30 30-45 45-00 04:00-15 15-30 30-45 45-00 PM 3 HOUR **TOTALS** 1 HOUR TOTALS 02-03 215-315 230-330 245-345 03-04 315-415 330-430 345-445 04-05 PEAK HOUR 245-345

STSLTD S

STSLTD STSLTD

1 |

7 j

04-05

345-445

PEAK HOUR

	NBLT - MD 187	SB - IVID 18/		WB - 1-2/0 KAINP		NB - INID 18/		
PHASE	1	7	3	4	ιΩ	9	_	8
MIN GRN	4	10	0	4	0	10	0	0
BK MGRN	0	0	0	0	0	0	0	0
CS MGRN	0	0	0	0	0	0	0	0
DLY GRN	0	0	0	0	0	0	0	0
WALK	0	7	0	0	0	7	0	0
WALK2	0	0	0	0	0	0	0	٥
WLK MAX	0	0	0	0	0	0	•	0
PED CLR	0	10	0	0	0	10	0	٥
PD CLR2	0	0	0	0	0	0	0	•
PC MAX	0	0	0	0	0	0	0	۰
PED CO	0	0	0	0	0	0	0	۰
VEH EXT	4	0	0	4	•	0	°	٥
VH EXT2	0	0	0	0	•	0	0	۰
MAX1	20	50	0	25	0	50	0	ŀ
MAX2	45	9	0	20	0	09	0	ŀ
MAX3	0	09	0	06	0	99	0	0
DYM MAX	0	0	0	0	0	0	0	0
DYM STP	0	0	0	0	0	0	0	0
YELLOW	4	4.5	0	4	0	4.5	ं 0	0
RED CLR	2.5	1.5	0	4	0	1.5	0	0
RED MAX	0	0	0	0	0	0	0	0
RED RVT	5	5	5	5	5	S	5	22
ACT B4	0	0	0	0	٥	0	0	0
SEC/ACT	0	0	0	0	0	0	0	0
MAX INT	0	0	0	0	0	0	0	0
TIME B4	0	0	0	0	0	0	0	٥
CARS WT	0	0	0	0	0	0	0	0
STPTDUC	0	0	0	0	0	0	0	0
TTREDUC	0	0	0	0	0	0	0	0
MIN GAP		0	0	0	0	0	-	٠

8	0		NONE	8	0		NONE	8	0		NON
7	0		NONE	7	0		NONE	7	0		NONE
9	105	×	NONE	9	115	×	NONE	9	114	×	NONE
2	0		NONE	5	0		NONE	2	0		NONE
4	45		NONE	4	35		NONE	4	36		NONE
3	0		NONE	က	0		NONE	8	0		NONE
2	79	×	NONE	2	78	×	NONE	2	64	×	NON
7	26		NONE	1	37		NONE	1	20		NON
		COORD	PHASE MODE	PHASE	SPLIT 2	COORD	PHASE MODE	PHASE	SPLIT 3	COORD	PHASE MODE
PM	3	150	51								
Μid	2	150	86								
AM	T	150	105								

USE SPLIT PATTERN CYCLE OFFSET VAL

STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD STSLTD STREET

Montgomery County 02/07/2019 Day Sunny

HICLE TURNIN Intersection of: and: Counted by:			orgetown F nan Ln	Rd				Location : Date : Weather Entered b	: y:	Montgor 02/07/20 Sunny SKN)19	Day:	Thursda			STR TRAF STUI LTD	FIC	
TIME	TRAFF on:	IC FROM Old Geo	NORTH orgetown F			C FROM				C FROM Tuckern	WEST nan Ln			FIC FROM	MEAST		TOTAL N+S	
TIME	RIGHT	THRU	LEFT		LEFT	THRU	RIGHT	TOTAL	RIGHT	THRU			LEFT	THRU	RIGHT	TOTAL	E + W	į
	· · 																	1
06:30-45	26	214	2	242	17	87	17	121	11	24	22	57	42	14	4	60	480	ĺ
45-00	31	294	8	333	30	123	30	183	25	40	12	77	66	26	6	98	691	1
07:00-15	13	352	6	371	26	103	37	166	22	58	25	105	105	28	7	140	782	1
15-30	25	384	7	416	37	176	59	272	31	81	21	133	132	46	5	183	1004	
30-45	23	423	11	457	40	292	88	420	38	96	22	156	167	68	11	246	1279	ļ
45-00	37	373	3	413	37	297	91	425	26	105	55	186	148	75	26	249	1273	ļ
08:00-15	31	388	16	435	48	266	63	377	34	133	51	218	153	82	17	252	1282 1225	ļ
15-30	31	392	7	430	41	255	64	360	37	116	46	199	155	69 40	12 10	236 186	1225	ļ.
30-45	27	406	3	436	41	308	45	394	49	101	50 53	200 161	136 135	42	7	184	1210	1
45-00	32	400	10	442	37	346	40 51	423 390	36	72 46	44	127	124	48	12	184	1150	ł
09:00-15 15-30	38 38	403 305	8 5	449 348	27 42	312 291	54	387	37 30	65	70	165	104	61	6	171	1071	i
AM 3 HOUR	30	305	3	340	42	231	34	307	30	05	70	100	104	01	Ü		1071	į
TOTALS	352	4334	86	4772	423	2856	639	3918	376	937	471	1784	1467	599	123	2189	12663	i
1 HOUR																		İ
TOTALS	i															i		ĺ
630-730	95	1244	23	1362	110	489	143	742	89	203	80	372	345	114	22	481	2957	1
645-745	92	1453	32	1577	133	694	214	1041	116	275	80	471	470	168	29	667	3756	1.
07-08	98	1532	27	1657	140	868	275	1283	117	340	123	580	552	217	49	818	4338	1
715-815	116	1568	37	1721	162	1031	301	1494	129	415	149	693	600	271	59	930	4838	1
730-830	122	1576	37	1735	166	1110	306	1582	135	450	174	759	623	294	66	983	5059	
745-845	126	1559	29	1714	167	1126	263	1556	146	455	202	803	592	266	65	923	4996	ļ
08-09	121	1586	36	1743	167	1175	212	1554	156	422	200	778	579	233	46	858	4933	ļ
815-915	128	1601	28	1757	146	1221	200	1567	159	335	193	687	550	199	41	790	4801	ļ
830-930 PEAK HOUR	135	1514	26	1675	147	1257	190	1594	152	284	217	653	499 623	191 294	35 66	725 983	4647 5059	P
730-830	122	1576	37	1735	166	1110	306	1582	135	450	5.79	759		0.90			3039	١.
PM	0.82	0.93	0.58		0.86	0.93	0.84		0.89	6.85	0.71		0.93	0.70	0.6	•		10.
02:00-15	50	271	10	331	45	242	55	342	26	38	52	116	74	45	6	125	914	i
15-30	53	280	11	344	45	267	58	370	32	40	53	125	80	51	9	140	979	i
30-45	52	277	12	341	43	326	78	447	28	37	63	128	79	48	7	134	1050	i
45-00	54	269	9	332	46	380	75	501	25	33	54	112	77	50	10	137	1082	i
03:00-15	39	284	21	344	55	376	63	494	29	46	69	144	101	68	9	178	1160	İ
15-30	66	296	9	371	59	370	89	518	27	41	57	125	74	63	10	147	1161	1
30-45	58	304	12	374	60	392	91	543	27	40	66	133	91	48	6	145	1195	1
45-00	50	285	10	345	57	429	91	577	32	59	71	162	76	54	19	149	1233	1
04:00-15	70	302	11	383	40	414	91	545	25	45	72	142	81	66	10	157	1227	
15-30	82	319	17	418	51	448	108	607	30	66	66	162	76	60	17	153	1340	•
30-45	82	314	14	410	64	448	122	634	25	51	67	143	77	78	7	162	1349	ļ
45-00 PM	72 	320	13	405	56	509	136	701	24	68	84	176	82	87	8	177	1459	ļ
3 HOUR TOTALS 1 HOUR	 728 	3521	149	4398	621	4601	1057	6279	330	564	774	1668	968	718	118	1804	14149	
TOTALS		4007	40	4040	470	1015	000	1660	444	140	222	101	310	194	32	536	4025	1
02-03	209	1097	42	1348	179	1215	266	1660	111	148	222 239	481 509	310	217	35	589	4025	
215-315	198	1110	53	1361	189	1349 1452	274 305	1812 1960	114 109	156 157	243	509	331	229	36	596	4453	_
230-330 245-345	211	1126 1153	51 51	1388 1421	203 220	1518	318	2056	109	160	243	514	343	229	35	607	4598	
03-04	217 213	1169	51 52	1434	231	1516	334	2132	115	186	263	564	342	233	44	619	4749	i
315-415	213	1187	42	1434	216	1605	362	2183	111	185	266	562	322	231	45	598	4816	i
330-430	244	1210	50	1520	208	1683	381	2272	114	210	275	599	324	228	52	604	4995	•
345-445	284	1210	52	1556	212	1739	412	2363	112	221	276	609	310	258	53	621	5149	•
04-05	306	1255	55	1616	211	1819	457	2487	104	230	289	623	316	291	42	649	5375	•
PEAK HOUR	1 000	1200	00	1010	211	.515	107											i

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY Intersection of: Old Georgetown Rd

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD STSLTD STREET

Montgomery County Location: Date : Weather : 02/07/2019

Thursday

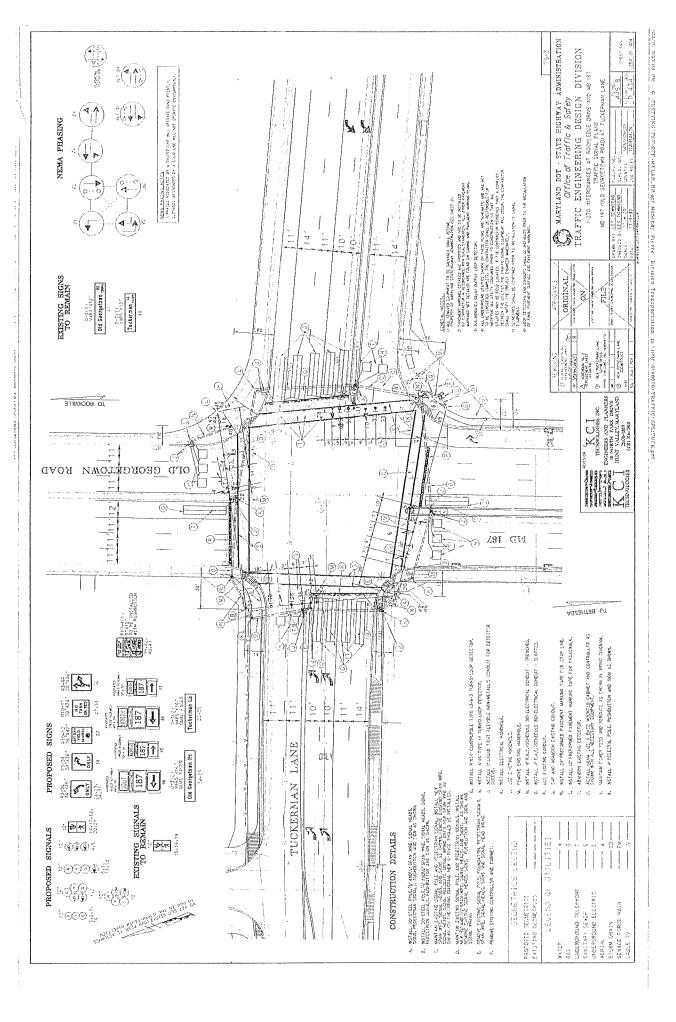
TRAFFIC

Old Georgetown Rd Tuckerman Ln ET/CB bik and: Counted by: bikes only

Entered by:

Sunny SKN

Day:


STUDIES LTD

Counted by:		ET/CB		bikes only				Entered I		SKN						LID	
 TIME	TRAFFI	C FROM	NORTH orgetown	Rd	TRAFF on:	IC FROM	SOUTH orgetown	Rd	TRAFFI on:	C FROM Tuckerr	WEST		TRAFI on:	FIC FROM Tuckerr	M EAST		TOTAL N+S
	RIGHT		LEFT	TOTAL	LEFT	THRU	RIGHT	TOTAL	RIGHT	THRU	LEFT	TOTAL		THRU	RIGHT	TOTAL	E + W
AM																	
06:30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30-45	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
09:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15-30 AM	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1
3 HOUR																	
TOTALS	0	0	0	0	0	1	1	2	0	0	0	0	0	1	0	1	3
1 HOUR																	
TOTALS																	
630-730	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
645-745	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07-08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
715-815	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
730-830	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
745-845	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
08-09	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
815-915	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
830-930	0	0	0	0	0	1	1	2	0	0	0	0	0	1	0	1	3
PEAK HOUR I																	l
830-930	0	0	0	0	0	1	1	2	0	0	0	0	0	1	0	1,] 3 I
PM I	,																İ
02:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	j o
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	j o
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	j o
45-00 I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i c
03:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i c
15-30	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	i 1
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i d
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	i 1
04:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	į c
15-30	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1	
30-45	0	0	0	Ó	0	. 0	0	0	0	0	0	0	0	0	0	0	j
45-00	0	0	0	0	0	. 0	1	1	0	0	. 0	0	0	1	0	1	i 2
PM i		· ·	· ·	Ü				1.	·								
3 HOUR			_		^		_		•	0	0	0	0	3	0	3	I I 6
TOTALS	0	1	0	1	0	0	2	2	0	U	0	U	U	3	U	3	,
1 HOUR																	!
TOTALS		_		-	_						•			0	0	0	(
02-03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
215-315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
230-330	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	
245-345	0	0	0	0	0	0	1	1	0	0		-					2
03-04	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	
315-415	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	
330-430	0	1	0	1	0	0	0	0	0	0	0	0	0	2	_	2] 3
345-445	0	1	0	1	0	0	0	0	0	0	0	0	0	2	0	2] 3
04-05	0	1	0	1	0	0	1	1	0	0	0	0	0	2	0	2	4
PEAK HOUR			-							_	-	_	-	_	•	_	! .
04-05	0	1	0	1	0	0	1	1	0	0	0	0	0	2	0	2	4

STSLTD ST

Intersection of: and: Counted by:	RJ/ET	rgetown R			Date: Weather Entered	Ву:	1/16/2019 Fair SKN	Day:	Wednesday
<u> </u>	NORTH	LEG	EAST	LEG	SOUTH	LEG	WES.	TLEG	
	EB	WB	NB	SB	EB	WB	NB	SB	TOTAL
AM								i	i
06:30-45	0	0	0	0	0	0	0	0	0 0
45-00 07:00-15	0	0	0	0	0	0	0	0 1	
1 15-30 I	1	1	0	0	0	0	0	0	
30-45	0	0	0	0	1	1	0	0	2
45-00	0	0	0	0	0	0	0	0	0
08:00-15	0	0	0	0	0	0	0	0	• 1
15-30	1	0	0	0	0	0	0	0 0	1 0
30-45 45-00	0	0	0	0	0	0	0	0	
09:00-15	0	0	1	0	0	0	0	0	1 1
15-30	0	0	0	0	0	0	0	0	0
AM 3 HOUR									
I TOTALS I	2	1	1	0	1	1	0	0	6
1 HOUR								i	į į
TOTALS					603	201			
630-730	1	1	0	0	0	0	0	0	2 1 4
645-745 07-08	1 1	1 1	0 0	0 0	1	1 1	0	0 0	4 4
715-815	1	1	0	0	1	1	0	0	
730-830	1	0	0	0	1	1	0	0	
745-845	1	0	0	0	0	0		0	
08-09 815-915	1 1	0	0 1	0	0	0		0	1 2
830-930	0	0	1	. 0	0	0		0	1 1
PEAK HOUR	_								i i
07-08	1	1	0	0	1	1	0	0	4
I PM I									
02:00-15	0	0	0	0	0	0		0	[0
15-30 30-45	0	0	0	0	0	0		0	1 2 1
45-00	0	0	2	o	0	1		0	3 1
03:00-15	0	0	0	2	0	0		0	2
15-30	0	0	0	0	0	0		0	0
30-45	0	0	0	0	0	0		0	0
45-00	0	0	0	0	0	0		0	[0 I 0
04:00-15 15-30	0	0	0	0	0	0		0	1 01
30-45	1	0	0	1	0	0		0	2
45-00	0	1	0	0	0	0	0	0	1
PM 3 HOUR									
I TOTALS I	1	1	3	4	0	- 1	0	0	10
1 HOUR									i i
TOTALS			2						! [
02-03	0	0	3	1 3	0 0	1 1	0	0	5 1 7
215-315 230-330	0	0	3	3	0	1			7
245-345	0	o	2	2	0	1		0	1
03-04	0	0	0	2	0	0		0	2
315-415	0	0	0	0	0	0		0	0
330-430	0	0	0	0 1	0	0		0	0 2
345-445 04-05	1 1	0 1	0	1	0	0		0] 2]
PEAK HOUR			Ū		J	·	Ü	•	j i
230-330	0	0	3	3	0	1	0	0	7

STSLTD S

150 OLD GEORGETOWN ROAD (MD 187) & TUCKERMAN LANE SBIT - MD 187 NB - MD 187 WB - TILCKERMAN IA FB -:

	SBLT - MD 187	NB - MD 187	WB - TUCKERMAN LA	EB - TUCKERMAN LA	SB - MD 187	SB - MD 187 NBLT - MD 187		
PHASE	H	2	. 8	4	ĸ	v	7	œ
MIN GRN	3	7	5.13.1	រេ	Sec. 187. 185	3	0	0
BK MGRN	0 / / /	0	0	0	0	0	0	0
CS MGRN	0.	0	0	0	0	0	0	۰
DLY GRN	0	0	0	0	0	0	0	۰
WALK	0	7	0	۷	7 - 7	0	0	0
WALK2	0	0	0	0	0.	0	0	0
WLK MAX	0	0	0	0	0	0	0	0
PED CLR	0	24	0	26	24	0	0	0
PD CLR2	0	0	1970 - O'THE	0	0	0	0	0
PC MAX	0	0	0	0	0	0	0	0
PED CO	0	0		0	0	0	0	0
VEH EXT		0	de la companya de la seconomia de la companya de la companya de la companya de la companya de la companya de l La companya de la co	S	0.00	8	0	0
VH EXT2	0	0	0 Page 1887	0	0 ***	0	0	0
MAX1	15	50	22	22	20	30	0	0
MAX2	35	60	09	35	09	40	0	0
MAX3	0	0	0 0 0	30	0	0	0	0
DYM MAX	0.00	0	10 July 10 Jul	0	0	0	0	0
DYM STP	0	0		0	0	0	0	0
YELLOW	4.5	4.5	7.47 4.74	4	4.5	4.5	3	3
RED CLR		2	2.5	2.5	2	7	0	0
RED MAX	80 S O O O O O	0	0	0	0	0	0	0
RED RVT	. 5	10	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	5	S	5	ις
ACT B4	0	0	.0	0	0	0	0	0
SEC/ACT	0	0	0.	0	0	0	0	0
MAX INT	0	0	0.00	0	0	0	0	0
TIME B4	0	0	e de la composition de la composition de la composition de la composition de la composition de la composition	0	0	0	0	0
CARS WT	0	0	0.00	0	0	0	0	0
STPTDUC	0	0		0	0	0	0	0
TTREDUC	0	0		0	0	0	0	0
MIN GAP	0	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0.000	0	u	۰

8 0	NONE	0	NONE	∞.	0	NONE
7	NONE 7	o	NONE	7	0	NONE
6 19	NONE	26	NONE	9	26	NONE
53 X	NONE	, гх ×	NONE	2	×	NONE
40	NONE 4	40	NONE	4	40	NONE
88 88			11.71		28	
2 X		ı ‰ ×			8×	
T 77		21			22	
PHASE SPLIT 1 COORD	PHASE MODE	SPLIT 2 COORD	PHASE MODE	PHASE	SPLIT 3 COORD	PHASE MODE
PM 3 150	53					
Mid 2 150	102					

AM 1 150 110

> USE SPLIT PATTERN CYCLE OFFSET VAL

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD STSLTD
STREET
Wednesday TRAFFIC

Location: Date :

Montgomery County 02/06/2019

STUDIES LTD

VEHICLE TURNING MOVEMENT COUNT - SUMMARY Intersection of: Old Georgetown Rd and: Poindexter Ln

Weather: Entered by: Cloudy/Some Rain SKN

and: Counted by:		Poindex SKN						Weather Entered b		Cloudy/S SKN		iin 				LTD	DIES	
	TRAFFI	C FROM Old Geo			TRAFFI on:	C FROM Old Geo	SOUTH orgetown	Rd	TRAFFI on:	C FROM Poindex	WEST ter Ln		TRAFI	FIC FROM	MEAST _n		TOTAL N+S +	
TIME	RIGHT	THRU		TOTAL			RIGHT	TOTAL	RIGHT			TOTAL	LEFT		RIGHT	TOTAL	E + W	 -
AM							_						•	0		10	200	į
06:30-45	5	154	3	162	4	107	7	118	0	0	0	0	. 9	0	1	10	290 464	ļ.
45-00	1	293	12	306	1	122	16	139	2	0	1	3	14	A COLUMN	2	16 33	556	1
07:00-15	0	371	8	379	2	119	19	140	4	0	0	4	30 43	0	5	48	737	ļ
15-30	9	467	4	480	10	176	16	202	4	0	2	7 3	33	0	5	38	756	1
30-45	14	416	12	442	9	236	28	273	1	0	4	7	33	0	12	45 I	842	1
45-00	14	421	13	448	10	295 309	43 45	342 364	2	0	1	3	39	0	7	46	853	+
08:00-15	13	417 389	10	440 413	9	283	21	313	1	0	1	2	35	0	5	40	768	ł
15-30	7	408	17 10	419	6	287	37	330	6	0	2	8	43	0	2	45	802	+
30-45	1	374	6	381	10	299	54	363	1	0	6	. 7	53	0	14	67	818	ł
45-00	1	338	19	358	10	338	60	408	1	0	4	5	37	0	7	44	815	ł
09:00-15	5	326	16	347	4	278	42	324	0	0	4	4	34	0	3	37	712	1
15-30	5	326	10	347	4	210	42	324	U	U	4	4	34	U	3	37	712	ł
AM																ł		i
3 HOUR	74	1274	120	157E	70	2040	388	3316	25	0	28	53	403	0	66	469 I	8413	1
TOTALS	71	4374	130	4575	79	2849	300	3310	25	U	20	33	403	U	00	400	0410	1
1 HOUR																- 1		ł
TOTALS	45	1005	27	1207	17	524	58	599	10	0	4	14	96	0	11	107 I	2047	1
630-730	15	1285	27	1327	22	653	79	754	11	0	6	17	120	0	15	135 I	2513	
645-745	24	1547	36	1607	25	826	106	957	12	0	9	21	139	0	25	164	2891	1
07-08	37	1675	37	1749		1016		1181	10	0	10	20	148	0	29	177	3188	1
715-815	50	1721	39	1810 1743	33 32	1123	132 137	1292	7	0	8	15	140	0	29	169	3219	
730-830	48	1643	52 50		29	1174	146	1349	12	0	8	20	150	0	26	176	3265	1
745-845	35	1635 1588		1720 1653	35	1174	157	1370	10	0	10	20	170	0	28	198	3241	i
08-09	22		43 52	1571	35	1207	172	1414	9	0	13	22	168	0	28	196	3203	1
815-915 830-930	10	1509 1446	51	1505	30	1207	193	1425	8	0	16	24	167	0	26	193	3147	PNI
	8	1446	51	1505	30	1202	193	1423	0	U	10	24	107	U	20	100	0147	i' '
PEAK HOUR 745-845	35	1635	50	1720	29	1174	146	1349	12	0	8	20	150	0	26	176	3265	1.9%
PM I																i		l
02:00-15	1	290	4	295	0	215	27	242	2	0	1	3	42	0	8	50	590	1
15-30	3	291	4	298	5	288	38	331	2	0	2	4	48	0	3	51	684	•
30-45	2	289	4	295	9	326	43	378	1	0	1	2	51	0	9	60	735	1
45-00	2	327	10	339	16	416	46	478	1	0	3	4	39	0	4	43	864	
03:00-15	2	294	8	304	14	374	63	451	4	0	0	4	69	0	7	76	835	
15-30	2	250	4	256	14	318	35	367	1	0	1	2	64	0	3	67	692	•
30-45	3	264	7	274	9	426	39	474	1	0	1	2	61	0	3	64	814	
45-00	3	258	9	270	10	436	45	491	3	0	4	7	48	0	10	58	826	1
04:00-15	9	324	12	345	10	402	24	436	2	0	2	4	52	0	5	57	842	•
15-30	6	329	9	344	10	464	61	535	5	0	2	7	45	0	0	45	931	1
30-45	2	321	11	334	10	438	53	501	4	0	2	6	47	0	8	55	896	1
45-00	0	317	6	323	14	455	64	533	1	0	1	2	34	0	6	40	898	1
PM i															9	I		1
3 HOUR																		
TOTALS	35	3554	88	3677	121	4558	538	5217	27	0	20	47	600	0	66	666	9607	1
1 HOUR																1		1
TOTALS																		Ι.
02-03	8	1197	22	1227	30	1245	154	1429	6	0	7	13	180	0	24	204	2873	
215-315	9	1201	26	1236	44	1404	190	1638	8	0	6	14	207	0	23	230	3118	300
230-330	8	1160	26	1194	53	1434	187	1674	7	0	5	12	223	0	23	246	3126	
245-345	9	1135	29	1173	53	1534	183	1770	7	0	5	12	233	0	17	250	3205	
03-04	10	1066	28	1104	47	1554	182	1783	9	0	6	15	242	0	23	265	3167	•
315-415	17	1096	32	1145	43	1582	143	1768	7	0	8	15	225	0	21	246	3174	
330-430	21	1175	37	1233	39	1728	169	1936	11	0	9	20	206	0	18	224	3413	
345-445	20	1232	41	1293	40	1740	183	1963	14	0	10	24	192	0	23	215	3495	1
04-05	17	1291	38	1346	44	1759	202	2005	12	0	7	19	178	0	19	197	3567	1
	10.00															i		1
PEAK HOUR														0		197	3567	

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

Intersection of:

Counted by:

and:

STSLTD STSLTD STSLTD STSLTD STSLTD

Entered by:

STSLTD STSLTD STSLTD STSLTD

Old Georgetown Rd

bikes only

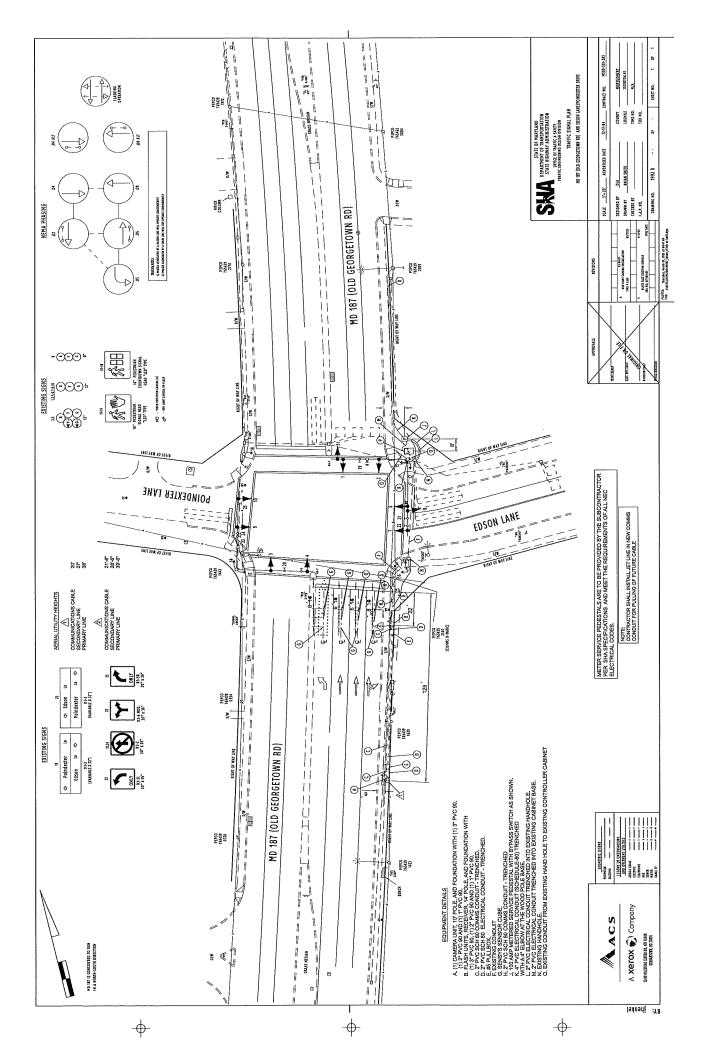
Poindexter Ln

SKN

Location : Date : Weather : Montgomery County 02/06/2019 Day: Cloudy/Some Rain

SKN

Wednesday


STREET TRAFFIC STUDIES LTD

TRAFFIC FROM EAST TOTAL TRAFFIC FROM NORTH TRAFFIC FROM SOUTH TRAFFIC FROM WEST N + SOld Georgetown Rd Old Georgetown Rd Edson Ln Poindexter Ln on: on: on: on: TIME RIGHT THRU LEFT TOTAL LEFT THRU RIGHT TOTAL E + W RIGHT THRU LEFT TOTAL LEFT THRU RIGHT TOTAL AM 06:30-45 45-00 07:00-15 15-30 30-45 45-00 08:00-15 n 15-30 30-45 45-00 09:00-15 15-30 AM 3 HOUR **TOTALS** 1 HOUR **TOTALS** 630-730 645-745 07-08 715-815 730-830 745-845 08-09 815-915 830-930 PEAK HOUR 645-745 PM 02:00-15 15-30 30-45 45-00 03:00-15 15-30 30-45 45-00 04:00-15 15-30 30-45 45-00 PM 3 HOUR **TOTALS** 1 HOUR **TOTALS** 02-03 215-315 0 1 0 1 230-330 245-345 03-04 315-415 330-430 345-445 04-05 **PEAK HOUR** 2 | 1 i 330-430

STSLTD ST

and: Counted by:	Poindex ET/CB				Weathe Entered	r: By:	Clear SKN		
	NORTH	LEG		LEG	SOUTH	LEG	WEST	ΓLEG	
TIME 	EB	WB	NB	SB	EB	WB	NB	SB	
AM 06:30-45	0	0	0	0	0	0	0	0	
45-00	0		1	1	0	0	0	0	
07:00-15	0	0	0	0	0	0	0	0	
15-30 I	0	0	1	0	0	0	0	1	
30-45	1	1	o.	1	0	0	0	0	
45-00 I	1	1	5	6	0	0	0	0	1
08:00-15	o	Ó	3	2	0	0	0	1	
15-30	0	0	1	1	0	0	0	0	
30-45	0	0	o	1	0	1	0	0	
45-00	0	0	1	o	1	0	1		
09:00-15	0	0	0	0	0	0	0	0	
15-30	0	0	0	1	1.	1	0	1	
AM I									
3 HOUR								,	
TOTALS	2	2	12	13	2	2	1	3	3
1 HOUR	_	_			_	_		-	-
TOTALS									
630-730	0	0	2	1	0	0	0	1	
645-745	1	1	2	2	0	0	0	1	
07-08	2	2	6	7	0	0	0	1	1
715-815	2	2	9	9	0	0	0	2	2
730-830	2	2	9	10	0	0	0	1	2
745-845	1	1	9	10	0	1	0	1	2
08-09	0	0	5	4	1	1	1	1	1
815-915	0	0	2	2	1	1	1	0	
830-930	0	0	1	- 2	2	2	1	1	
PEAK HOUR									
730-830	2	2	9	10	0	0	0	2	2
PM į									ĺ
02:00-15	0	0	0	0	0	0	0	0	
15-30	0	0	0	0	0	0	0	0	
30-45	0	0	0	1	0	0	0	0	
45-00	0	0	1	0	0	0	0	0	
03:00-15	0	0	8	5	0	0	0	0	1
15-30	0	0	0	0	0	0	0	0	
30-45	0	0	0	0	0	0	0	0	l
45-00	0	0	0	1	0	1	0	0	
04:00-15	0	0	0	0	0	0	0	1	l I
15-30	0	0	1	2	0	0	0	0	
30-45 45-00	0	0	0	0	0	0	0	0	
PM	U	U	U	U	U	U	U	U	1
3 HOUR									
TOTALS	0	0	12	10	0	1	0	2	l 2
1 HOUR	U	U	14	10	U		3	_	-
TOTALS									
02-03	0	0	1	1	0	0	0	0	l
215-315	0	0	9	6	0	0	0	0	1
230-330	0	0	9	6	0	0	0	0	1
245-345	0	0	9	5	0	0	0	0	i i
03-04	0	0	. 8	6	0	1	0	0	i 1
315-415	. 0	0	0	1	0	1	0	1	i .
330-430	0	0	2	3	0	1	0	2	i
345-445	0	0	3	4	0	1	0	2	i 1
04-05	0	0	3	3	0	0	0	2	i '
PEAK HOUR	-	-	-	-	-		-	_	İ

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD

494 OLD GEORGETOWN ROAD (MID 187) & POINDEXTER LANE/EDSON LANE

	J 1	SB - MD 187	_	EB - POINDEXTER LA	SBLT - MD 187	NB - INID 18/	,	WB - EDSON LA
PHASE	1	2	3	4	Ŋ	6	7	8
MIN GRN	0	7	ı	ន	3	2	ಂ	5
BK MGRN	0	0	0	0	0	0	0	0
CS MGRN	0	٥	٥	0	0	0	0	0
DLY GRN	0	٥	0	0	0	0	0	0
WALK	0	7	٥	7	0	7	0	
WALK2	0	0	0	0	0	0	0	0
WLK MAX	0	0	0	0	0	0	0	0
PED CLR	0	10	0	18	0	10	0	18
PD CLR2	0	0	0	0	0	0	0	0
PCMAX	0	٥	0	0	0.000	0	0	0
PED CO	0		0	0	0	0	0	0
VEH EXT	0	0	ි o	4	3	0	0	4
VH EXT2	0	0	0	0	0	0	0	0
MAX1	0	09	<u>.</u>	25	15	09	0	25
MAX2	0	09	0	45	30	09	0	70
MAX3	0	0	0	0	0	0	0	0
DYM MAX	0	0	0	0	0	0	0	0
DYM STP	0	0	0	0	0	. 0	0	0
YELLOW	4	4.5	4	4	3.5	4.5	4	4
RED CLR	0	2	0	Ħ		2	0	1
RED MAX	0	0	0	0	0	0	0	0
RED RVT	2	2	2	ß	2	2	2	5
ACT B4	0	0	0	0	0	0	0	0
SEC/ACT	0	0	0	0	0	0	0	0
MAX INT	0	0	0	0	0	0	0	0
TIME B4	0	0	0	0	0	0	0	0
CARS WT	0	0	0	0	0	0	0	0
STPTDUC	0	0	0	0	0	0	0	0
TTREDUC	0	0	0	0	0	0	0	0
MIN GAP	0.000	0	0	0	0	0	•	0

	48				45		E NONE		48		
7	0		NONE	7	0		NONE	7	0		nivON
9	88	×	NONE	9	57	×	NONE	9	85	×	III CZ
S	22		NONE	2	18		NONE	5	17		RINCIA
4	48		NONE	4	45		NONE	4	48		קאַ מין
m	0		NONE	3	0		NONE	ന	0		
2	102	×	NONE	2	75	×	NONE	2	102	×	חואכוז
	0		NONE		0		NONE	1	0		1 2 C 12
PHASE	SPLIT 1	COORD	PHASE MODE	PHASE	SPLIT 2	COORD	PHASE MODE	PHASE	SPLIT 3	COORD	TCC A TOALTO
*											
ΡM	3	150	107								
Nid	2	120	0								

AM 1 150 23

> USE SPLIT PATTERN CYCLE OFFSET VAL

STSLTD STSLTD STSLTD STSLTD STSLTD
VEHICLE TURNING MOVEMENT COUNT - SUMMARY
Intersection of: Old Georgetown Rd

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD STSLTD STREET

Location : Date : Weather :

Intersection of: and: Counted by:		Nicholso ET/CB						Date Weather Entered	:	02/12/20 Rain SKN		Day:	Tuesda	y 		TRAF STUI LTD	
	on:	C FROM Old Geo	NORTH orgetown	Rd	TRAFF on:	IC FROM Old Ge	SOUTH orgetown	Rd	TRAFFI on:	C FROM Tilden L	WEST n		TRAFF on:	FIC FROM			TOTAL N+S +
TIME		THRU		TOTAL		THRU	RIGHT	TOTAL		THRU	LEFT	TOTAL	LEFT		RIGHT	TOTAL	E+W
AM																i	
06:30-45	1	128	7	136	1	46	16	63	5	4	1	10	43	1	2	46	255
45-00	7	199	5	211	2	56	34	92	10	7	4	21	73	2	1	76	400
07:00-15	3	234	7	244	3	70	37	110	38	15	1	54	67	5	2	74	482
15-30	2	284	3	289	8	107	65	180	52	11	3	66	115	11	1	127 133	662 745
30-45	6	282	8	296	14	159	83	256	30	23 22	7	60 71	122 128	10 21	0	149	829
45-00	12	271	5	288 307	27 36	178 217	116	321 343	42 32	23	6	61	120	20	0	140	851
08:00-15	13	286	8	261	21	204	87	312	34	26	11	71	115	17	1	133	777
15-30	14	240	12	262	6	205	84	295	26	12	5	43	107	16	0	123	723
30-45 45-00	8	251	10	269	16	183	104	303	19	16	7	42	89	17	1	107	721
09:00-15	8	235	11	254	16	230	74	320	19	17	7	43	97	21	1	119	736
15-30	3	210	6	219	9	175	65	249	22	17	9	48	74	10	1	85	601
AM 3 HOUR		210		_10		.,,										i	
TOTALS I	83	2864	89	3036	159	1830	855	2844	329	193	68	590	1150	151	11	1312	7782
1 HOUR		_,,,				. =,=.*				4 5 8						i	
TOTALS																	
630-730	13	845	22	880	14	279	152	445	105	37	9	151	298	19	6	323	1799
645-745	18	999	23	1040	27	392	219	638	130	56	15	201	377	28	5	410	2289
07-08	23	1071	23	1117	52	514	301	867	162	71	18	251	432	47	4	483	2718
715-815	33	1123	24	1180	85	661	354	1100	156	79	23	258	485	62	2	549	3087
730-830	45	1079	28	1152	98	758	376	1232	138	94	31	263	485	68	2	555	3202
745-845	45	1041	32	1118	90	804	377	1271	134	83	29	246	470	74	1	545	3180
08-09	41	1021	37	1099	79	809	365	1253	111	77	29	217	431	70	2	503	3072
815-915	36	970	40	1046	59	822	349	1230	98	71	30	199	408	71	3	482	2957
830-930 PEAK HOUR	25	940	39	1004	47	793	327	1167	86	62	28	176	367	64	3	434	2781
730-830	45	1079	28	1152	98	758	376	1232	138	94	31	263	485	68	2	555	3202
PM	(332)	<u> </u>	2					615		-	-			40	-	00	 559
02:00-15	9	197	8	214	6	176	60	242	3	6	2	11	77	10	5	92	
15-30	9	192	8	209	7	146	71	224	4	3	0	7	94	14	4 2	112 90	552 540
30-45	8	179	5	192	16	172	58	246	4	2	6	12 15	83 90	14	2	106	630
45-00	8	181	11	200	24	199	86	309	10	12	1	15	63	12	4	79	578
03:00-15	7	183	7	197	15	194 190	78 90	287 292	2	14	5	23	92	24	3	119	638
15-30	10 7	185 198	9	204 215	12 18	218	99	335	5	7	1	13	83	6	5	94	657
30-45 45-00	14	198	8	215	14	218	113	335 347	2	2	3	7	103	20	3	126	700
04:00-15	11	209	4	224	25	211	86	322	2	2	0	4	121	31	0	152	702
15-30	18	217	3	238	27	238	103	368	6	2	4	12	84	16	2	102	720
30-45 I	12	246	9	267	17	254	88	359	3	4	2	9	111	32	0	143	778
45-00 PM	12	207	9	228	15	248	109	372	1	2	0	3	94	20	2	116	719
3 HOUR TOTALS 1 HOUR	125	2392	91	2608	196	2466	1041	3703	46	59	26	131	1095	204	32	1331	 7773
TOTALS				645		200	075	1001	04	4.4	40	AE	244	42	13	400	l 2281
02-03	34	749	32	815	53	693	275	1021	21	14	10	45 49	344 330	43 45	13	387	2300
215-315	32	735	31	798	62	711	293	1066	20	20	9	49	328	55	11	394	2386
230-330	33	728	32	793	67	755	312	1134	20	31 36	14 9	65 66	328	56	14	398	2503
245-345	32	747	37	816	69	801	353 380	1223 1261	21 13	35	10	58	341	62	15	418	2573
03-04	38	764	34	836	59	822 839	388	1296	13	25	9	47	399	81	11	491	2697
315-415	42	790	31	863 897	69 84	887	401	1372	15	13	8	36	391	73	10	474	2779
330-430	50 55	822 870	25 24	949	83	923	390	1372	13	10	9	32	419	99	5	523	2900
345-445 04-05	55 53	870 879	24 25	949 957	84	951	386	1421	12	10	6	28	410	99	4	513	2919
PEAK HOUR	53	0/9	23	331	04	901	300	1-74-1	12	10	3	20	-113		•	0.0	
04-05	53	879	25	957	84	951	386	1421	12	10	6	28	410	99	4	513	2919

STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

Intersection of:

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD STSLTD STREET

Location : Date : Weather :

Montgomery County 02/12/2019 Day:

Tuesday

TRAFFIC STUDIES

Old Georgetown Rd Nicholson Ln Rain and: Entered by: Counted by: ET/CB bikes only SKN LTD

 	on:		orgetown		on:	C FROM Old Geo	orgetown	Rd	on:	C FROM Tilden L	.n		on:	FIC FROM Nichols	on Ln		TOTA N+S +
TIME					LEFT	THRU	RIGHT	TOTAL	RIGHT		LEFT	TOTAL		THRU	RIGHT	TOTAL	
 AM																	
6:30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ
7:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.03
15-30	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	-
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
45-00 I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i -
8:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
15-30 I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
45-00 I	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	i
9:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ł
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15-30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	}
AM																	
HOUR	_	•	_	•	~	•	•	^	^		_	u		•	0	0	
OTALS	0	0	0	0	0	0	0	0	0	_ 1	0	1	0	0	0	0	
HOUR																	
OTALS					man C	8				000				_	_	_	
30-730	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	l
45-745	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	
07-08 j	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	
'15-815 j	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
30-830 i	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
45-845	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
08-09 j	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15-915	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
30-930	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
EAK HOUR			·	•													i
45-745	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	
PM [
2:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
4:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ì
	U	U	U	U	U	U	U	U	U	U	U	U	J	U	V	J	ŀ
PM																	I I
HOUR		•	_	^	_	_	_			0	0	0	0	0	0	0	1
OTALS	0	0	0	0	0	0	0	0	0	U	U	U	U	U	U	U	1
HOUR																	!
OTALS				W-100				-	_	_		_		_	_	_	!
02-03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	!
15-315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
30-330	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
45-345	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I
03-04	j 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
315-415	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
330-430	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I
345-445	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
04-05	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	i
PEAK HOUR	1	U	U	U	J	0	0	U	J	3	3	v	3	J	•		i
04-05		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
	1 0	0	0	0	0	Ü	U	U	U	U	Ü	U	U	U	U	U	I

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD PEDESTRIAN COUNT - SUMMARY Location: **Montgomery County**

Date:

2/12/2019 Day:

Tuesday

Intersection of:

STSLTD ST

112 OLD GEORGETOWN ROAD (MD 187) & NICHOLSON LANE/TILDEN LANE

Ź	NBLT - MD 187 S	SB - MD 187	EB - TILDEN LA	WB - NICHOLSON LA	SBLT - MD 187	NB - MD 187		
PHASE	-	7	м	4	ın	9	7	8
MIN GRN	3	7	2	S	3		0	0
BK MGRN	0		0	0	0	0	0	0
CS MGRN	0	5	0	0	0	0	0	0
DLY GRN	0	0	0	0	0	0	0	0
WALK	0	7	7	0	0	7	0	0
WALKZ	0		0	0	0	0	0	0
WLK MAX	0		0	0	0	0	0	0
PED CLR	0	19	25	0	0	19	0	0
PD CLR2	0	0	0	0	0	0	0	0
PCMAX	0	0	0	0	0	0	0	0
PED CO	0	0	0	0	0	0	0	0
УЕН ЕХТ	3	0	2	'n	3	0	· 0	0
VH EXT2	0	0	0	0	0	0	0	0
MAX1	10	09	15	30	10	09	0	0
MAX2	20	09	30	35	15	09	0	0
MAX3	20	09	30	09	09	09	0	0
DYM MAX	0	0	0	0	0	0	0	0
DYM STP	0	0	0	0	0	0	0	0
YELLOW	3.5	4.5	4	4	3.5	4.5	0	0
RED CLR	2	. 2	3	3.5	2	2	1	1
RED MAX	0	0	0	0	0	0	0	0
RED RVT	2	2	5		2500 2000	2	2	2
ACT B4	0	0	0	0	0	0	0	0
SEC/ACT	0	0	0	0	0	0	0	0
MAX INT	0	0	0	0	0	0	0	0
TIME B4	0	0	0	0	0	0	0	0
CARS WT	0	0	0	0	0	0	0.0	0
STPTDUC	0	0	0	0	0	0	0	0
TTREDUC	0	0	0	0	0	0	0	0
MIN GAP			0	0	0	0	0	0

					0 0						
9	53	×	NONE	9	42	×	NONE	9	70	×	
5	18		NONE	5	16		NONE	5	16		
4	64		NONE	4	23		NONE	4	25		
m	39		NONE	r	39		NONE	က	39		高 のない ないものける
7	53	×	NONE	2	42	×	NONE	2	70	×	
1	18		NONE	1	16		NONE	П	16		
PHASE	SPLIT 1	COORD	PHASE MODE	PHASE	SPUT 2	COORD	PHASE MODE	PHASE	SPLIT 3	COORD	
PM	2	150	109								
Mid	2	120	0								

USE SPLIT PATTERN CYCLE OFFSET VAL STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

and:

Counted by:

Tuckerman Ln

Gloxinia Dr

STSLTD STSLTD STSLTD STSLTD STSLTD

Entered by:

STSLTD STSLTD STSLTD STSLTD

Location : Date : Weather : Montgomery County 02/05/2019 Day Sunny

SKN

Tuesday

STREET TRAFFIC STUDIES LTD

TRAFFIC FROM SOUTH TRAFFIC FROM WEST TRAFFIC FROM EAST TOTAL TRAFFIC FROM NORTH Tuckerman Ln on: Tuckerman Ln N + SGloxinia Dr on: on: on: Gloxinia Dr TIME LEFT THRU RIGHT TOTAL RIGHT THRU LEFT TOTAL LEFT THRU RIGHT TOTAL E + WRIGHT THRU LEFT TOTAL AM 06:30-45 45-00 07:00-15 15-30 30-45 45-00 08:00-15 15-30 30-45 45-00 09:00-15 15-30 AM 3 HOUR TOTALS 1 HOUR **TOTALS** 630-730 645-745 07-08 715-815 730-830 745-845 08-09 815-915 830-930 PEAK HOUR 730-830 0.89 PM 02:00-15 15-30 30-45 45-00 03:00-15 15-30 30-45 45-00 04:00-15 15-30 30-45 45-00 PM 3 HOUR **TOTALS** 1 HOUR **TOTALS** PHP 02-03 0.85 215-315 230-330 245-345 03-04 315-415 330-430 345-445 639 | 04-05 PEAK HOUR 639 j 1495 I 04-05

STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

Tuckerman Ln

Gloxinia Dr

Intersection of:

and:

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD

Location: Date : Weather:

Montgomery County 02/05/2019 Da

Sunny

Tuesday

STREET TRAFFIC STUDIES

and: Counted by:		Gloxinia SKN	Dr	bikes only				Weather Entered I	oy:	Sunny SKN						LTD	DIES
	on:	C FROM Gloxinia	Dr		TRAFFI on:	C FROM Gloxinia	SOUTH Dr		TRAFFI on:	C FROM Tuckern	WEST		TRAFI on:	FIC FROM	M EAST man Ln		TOTA
TIME	RIGHT	THRU	LEFT	TOTAL		THRU		TOTAL			LEFT	TOTAL		THRU	RIGHT	TOTAL	+ E+W
AM											•			•	0	0	
06:30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
45-00	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	
7:00-15	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	!
30-45	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	i
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	i
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	i
9:00-15	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	i .
15-30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l I
3 HOUR																	1
TOTALS	0	0	0	0	0	0	0	0	0	3	0	3	0	3	0	3	
1 HOUR																	ļ
TOTALS																	i
30-730	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
645-745	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	i
07-08	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
715-815	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
730-830 j	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	
745-845	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	1
08-09	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	3	ĺ
815-915 I	0	0	0	0	0	0	0	0	0	2	0	2	0	3	0	3	ĺ
830-930 i	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	1
PEAK HOUR																	ĺ
815-915	0	0	0	0	0	0	0	0	0	2	0	2	0	3	0	3	j
PM I																	ĺ
2:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	i
15-30	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	i
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
45-00 I	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	ĺ
3:00-15	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	Í
15-30	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	í
30-45	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	í
			0		0	0	0	0	0	0	0	0	0	2	0	2	í
45-00	1	0		1 0	0	0	0	0	0	1	0	1	0	2	0	2	Í
4:00-15	0	0	0	_	0	2	0	2	0	1	0	1	0	2	0	2	í
15-30	0	0	0	0							0	0	0	1	0	1	i
30-45	0	0	0	0	0	0	0	0	0	0	0	1	0	2	. 0	2	1
45-00	0	0	0	0	0	0	0	0	U	1	U	1	U	2	U	2	1
PM																	1
3 HOUR						_	_			_	_	_	_	10	•	40	!
TOTALS	1	0	0	1	1	3	0	4	0	7	0	7	0	12	0	12	!
1 HOUR																	!
TOTALS											0		Powers	- Common	SS and a second	20000	į.
02-03	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	!
215-315	0	0	0	0	0	0	0	0	0	3	0	3	0	0	0	0	
230-330	0	0	0	0	0	0	0	0	0	3	0	3	0	1	0	1	
245-345	0	0	0	0	1	1	0	2	0	3	0	3	0	1	0	1	1
03-04	1	0	0	1	1	1	0	2	0	2	0	2	0	3	0	3	1
315-415	1	0	0	1	1	1	0	2	0	2	0	2	0	5	0	5	1
330-430	1	0	0	1	1	3	0	4	0	2	0	2	0	6	0	6	I
345-445	1	0	0	1	0	2	0	2	0	2	0	2	0	7	0	7	İ
04-05	0	0	0	0	0	2	0	2	0	3	0	3	0	7	0	7	i
PEAK HOUR		0	0	v	U	_	Ü	_	· ·		Ü	-		•		•	i
330-430	1	0	0	1	1	3	0	4	0	2	0	2	0	6	0	6	i
	1	U	U	1	1	3	U	-	U	_	J	_	0	5	5	9	1

STSLTD ST Montgomery County 02/05/2019 Day: Location: PEDESTRIAN COUNT - SUMMARY

Date:

Tuesday

Tuckerman Ln

Intersection of:

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD

860 TUCKERMAN LANE & GLOXINIA DRIVE FRIT - TUCKERMAN LA WB - TUCKERMAN LA

EBLI - IUCKEKIMAN LA	מינוווייים מינווייים						
1	2	m	4	5	9	7	8
3	20	0	2	3	20	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	7	0	7	0	7	0	7
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	10	0	10	0	10	0	10
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	9	0	3	3	9	0	3
0	0	0	0	0	0	0	0
20	20	0	25	20	20	0	25
30	09	0	40	30	09	0	40
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3.5	4.5	м	3.5	3.5	4.5	3	3.5
1.5	1.5	0	2.5	1.5	1.5	0	2.5
0	0	0	0	0	0	0	0
5	2	ro.	2	S	2	5	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
The second secon							

	AM	Mid	PM	PHASE	1	2	3	4	2	9	7	∞
USE SPLIT PATTERN	1	2	m	SPLIT 1	17	20	0	33	17	20	0	33
CYCLE	100	100	100	COORD		×				×		
OFFSET VAL	0	0	0	PHASE MODE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
Intersection runs in FREE operation. Use MAX1 times for analysis.	AX1 times for a	ınalysis.		PHASE	1	2	n	4	2	9	7	∞
				SPLIT 2	17	20	0	33	17	20	0	33
				COORD		×				×		
				PHASE MODE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
				PHASE	1	2	m	4	5	9	7	∞
				SPLIT 3	17	20	0	30	17	20	0	33
				COORD		×				×		
				PHASE MODE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE

APPENDIX C CAPACITY WORKSHEETS - EXISTING CONDITIONS

	۶	→	*	•	-	4	1	†	<i>></i>	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	4	7	ሻሻ	1111			11111	77
Traffic Volume (vph)	0	0	0	113	13	529	147	1160	0	0	1844	754
Future Volume (vph)	0	0	0	113	13	529	147	1160	0	0	1844	754
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Lane Util. Factor				0.95	0.95	1.00	0.97	0.86			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1681	1702	1583	3433	6408			7544	1583
Flt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1681	1702	1583	3433	6408			7544	1583
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	122	14	569	158	1247	0	0	1983	811
RTOR Reduction (vph)	0	0	0	0	0	44	0	0	0	0	0	409
Lane Group Flow (vph)	0	0	0	67	69	525	158	1247	0	0	1983	402
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				54.2	54.2	54.2	10.6	81.8			64.7	64.7
Effective Green, g (s)				54.2	54.2	54.2	10.6	81.8			64.7	64.7
Actuated g/C Ratio				0.36	0.36	0.36	0.07	0.55			0.43	0.43
Clearance Time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				607	614	571	242	3494			3253	682
v/s Ratio Prot				001	011	011	c0.05	0.19			c0.26	
v/s Ratio Perm				0.04	0.04	c0.33						0.25
v/c Ratio				0.11	0.11	0.92	0.65	0.36			0.61	0.59
Uniform Delay, d1				31.9	31.9	45.8	67.9	19.3			32.9	32.5
Progression Factor				1.00	1.00	1.00	1.00	1.00			1.01	1.61
Incremental Delay, d2				0.1	0.1	19.9	6.2	0.3			0.4	1.5
Delay (s)				31.9	32.0	65.7	74.1	19.5			33.5	54.0
Level of Service				С	C	Е	Е	В			С	D
Approach Delay (s)		0.0			59.2			25.7			39.4	
Approach LOS		A			E			С			D	
Intersection Summary												
HCM 2000 Control Delay			38.3	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacit	ty ratio		0.74									
Actuated Cycle Length (s)			150.0		um of los				20.5			
Intersection Capacity Utilization	on		72.1%	IC	CU Level	of Service)		С			
Analysis Period (min)			15									
a Critical Lana Croup												

	۶	→	*	1	—	4	1	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	र्स	7	1,1	1111			11111	7
Traffic Volume (vph)	0	0	0	85	8	249	287	1675	0	0	1120	458
Future Volume (vph)	0	0	0	85	8	249	287	1675	0	0	1120	458
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Lane Util. Factor				0.95	0.95	1.00	0.97	0.86			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1681	1700	1583	3433	6408			7544	1583
FIt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1681	1700	1583	3433	6408			7544	1583
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	91	9	268	309	1801	0	0	1204	492
RTOR Reduction (vph)	0	0	0	0	0	57	0	0	0	0	0	212
Lane Group Flow (vph)	0	0	0	50	50	211	309	1801	0	0	1204	280
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				25.3	25.3	25.3	18.8	110.7			85.4	85.4
Effective Green, g (s)				25.3	25.3	25.3	18.8	110.7			85.4	85.4
Actuated g/C Ratio				0.17	0.17	0.17	0.13	0.74			0.57	0.57
Clearance Time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				283	286	266	430	4729			4295	901
v/s Ratio Prot							c0.09	c0.28			0.16	
v/s Ratio Perm				0.03	0.03	c0.13						0.18
v/c Ratio				0.18	0.17	0.79	0.72	0.38			0.28	0.31
Uniform Delay, d1				53.4	53.4	59.8	63.1	7.2			16.6	16.9
Progression Factor				1.00	1.00	1.00	1.00	1.00			0.84	1.53
Incremental Delay, d2				0.3	0.3	14.8	5.7	0.2			0.1	0.7
Delay (s)				53.7	53.7	74.6	68.7	7.4			14.1	26.6
Level of Service				D	D	Е	E	Α			В	C
Approach Delay (s)		0.0			68.9			16.4			17.7	
Approach LOS		Α			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			21.6	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capacit	ty ratio		0.52									
Actuated Cycle Length (s)			150.0	Si	um of los	t time (s)			20.5			
Intersection Capacity Utilization	on		57.8%	IC	U Level	of Service)		В			
Analysis Period (min)			15									
a Critical Lana Croup												

	۶	-	~	•	4—	*	1	†	<i>></i>	/	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	ሶ ጮ		14.14	ተተ	7	*	ተተተ	7	7	ተ ቀڼ	
Traffic Volume (veh/h)	174	450	135	623	294	66	166	1110	306	37	1576	122
Future Volume (veh/h)	174	450	135	623	294	66	166	1110	306	37	1576	122
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	176	455	136	629	297	67	168	1121	309	37	1592	123
Adj No. of Lanes	2	2	0	2	2	1	1	3	1	1	3	0
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	610	478	142	677	696	311	194	2169	675	193	1844	142
Arrive On Green	0.18	0.18	0.18	0.20	0.20	0.20	0.07	0.43	0.43	0.03	0.38	0.38
Sat Flow, veh/h	3442	2693	799	3442	3539	1583	1774	5085	1583	1774	4816	372
Grp Volume(v), veh/h	176	298	293	629	297	67	168	1121	309	37	1120	595
Grp Sat Flow(s), veh/h/ln	1721	1770	1722	1721	1770	1583	1774	1695	1583	1774	1695	1797
Q Serve(g_s), s	6.7	25.0	25.3	26.9	11.0	5.3	8.4	24.3	20.9	1.9	45.7	45.8
Cycle Q Clear(g_c), s	6.7	25.0	25.3	26.9	11.0	5.3	8.4	24.3	20.9	1.9	45.7	45.8
Prop In Lane	1.00		0.46	1.00		1.00	1.00		1.00	1.00		0.21
Lane Grp Cap(c), veh/h	610	314	305	677	696	311	194	2169	675	193	1299	688
V/C Ratio(X)	0.29	0.95	0.96	0.93	0.43	0.22	0.87	0.52	0.46	0.19	0.86	0.86
Avail Cap(c_a), veh/h	610	314	305	688	708	317	214	2169	675	214	1299	688
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.61	0.61	0.61	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	53.5	61.0	61.2	59.2	52.8	50.5	34.6	31.6	30.7	27.9	42.6	42.7
Incr Delay (d2), s/veh	0.3	37.4	40.7	13.1	0.3	0.2	27.5	0.9	2.2	0.5	7.7	13.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.2	15.5	15.5	14.1	5.4	2.4	5.5	11.6	9.5	0.9	22.7	25.2
LnGrp Delay(d),s/veh	53.8	98.4	101.9	72.3	53.1	50.7	62.2	32.5	32.9	28.4	50.4	56.2
LnGrp LOS	D	F	F	E	D	D	E	С	С	С	D	Е
Approach Vol, veh/h		767			993			1598			1752	
Approach Delay, s/veh		89.5			65.1			35.7			51.9	
Approach LOS		F			E			D			D	
	1		0	_		0	7					
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	10.4	70.5		33.1	16.9	64.0		36.0				
Change Period (Y+Rc), s	6.5	6.5		6.5	6.5	6.5		6.5				
Max Green Setting (Gmax), s	5.7	61.7		26.6	12.2	55.2		30.0				
Max Q Clear Time (g_c+l1), s	3.9	26.3		27.3	10.4	47.8		28.9				
Green Ext Time (p_c), s	0.0	11.8		0.0	0.1	5.7		0.6				
Intersection Summary												
HCM 2010 Ctrl Delay			55.1									
HCM 2010 LOS			Е									

	≯	-	*	1	4	4	1	†	1	1	\	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14/4	∱ }		44	44	7	N.	ተተተ	77	1	ተ ተኈ	
Traffic Volume (veh/h)	239	156	114	337	217	35	189	1349	274	53	1110	198
Future Volume (veh/h)	239	156	114	337	217	35	189	1349	274	53	1110	198
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	260	170	124	366	236	38	205	1466	298	58	1207	215
Adj No. of Lanes	2	2	0	2	2	1	1	3	1	1	3	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	370	216	148	443	456	204	297	2848	887	205	2265	403
Arrive On Green	0.11	0.11	0.11	0.13	0.13	0.13	0.07	0.56	0.56	0.03	0.52	0.52
Sat Flow, veh/h	3442	2007	1382	3442	3539	1583	1774	5085	1583	1774	4343	774
Grp Volume(v), veh/h	260	149	145	366	236	38	205	1466	298	58	942	480
Grp Sat Flow(s), veh/h/ln	1721	1770	1619	1721	1770	1583	1774	1695	1583	1774	1695	1726
Q Serve(g_s), s	10.9	12.3	13.2	15.6	9.3	3.2	7.9	26.7	15.3	2.3	27.6	27.6
Cycle Q Clear(g_c), s	10.9	12.3	13.2	15.6	9.3	3.2	7.9	26.7	15.3	2.3	27.6	27.6
Prop In Lane	1.00		0.85	1.00		1.00	1.00		1.00	1.00		0.45
Lane Grp Cap(c), veh/h	370	190	174	443	456	204	297	2848	887	205	1768	900
V/C Ratio(X)	0.70	0.78	0.84	0.83	0.52	0.19	0.69	0.51	0.34	0.28	0.53	0.53
Avail Cap(c_a), veh/h	424	218	200	562	578	259	455	2848	887	229	1768	900
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.65	0.65	0.65	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	64.6	65.2	65.6	63.7	61.0	58.3	19.8	20.4	17.9	17.4	23.8	23.8
Incr Delay (d2), s/veh	4.4	14.8	23.0	5.3	0.6	0.3	2.9	0.7	1.0	0.7	1.2	2.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.4	6.8	7.0	7.7	4.6	1.4	4.1	12.7	7.0	1.1	13.2	13.8
LnGrp Delay(d),s/veh	69.0	80.0	88.7	69.0	61.6	58.6	22.6	21.1	18.9	18.2	24.9	26.0
LnGrp LOS	E	F	F	E	E	E	С	С	В	В	C	C
Approach Vol, veh/h		554			640			1969			1480	
Approach Delay, s/veh		77.1			65.7			20.9			25.0	
Approach LOS		E			E			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.1	90.5		22.6	16.8	84.7		25.8				
Change Period (Y+Rc), s	6.5	6.5		6.5	6.5	6.5		6.5				
Max Green Setting (Gmax), s	6.6	74.4		18.5	23.7	57.3		24.5				
Max Q Clear Time (g_c+l1), s	4.3	28.7		15.2	9.9	29.6		17.6				
Green Ext Time (p_c), s	0.0	18.2		0.9	0.5	12.1		1.8				
Intersection Summary												
HCM 2010 Ctrl Delay			35.1									
HCM 2010 LOS			D									

Synchro 10 Report Page 1

	۶	→	*	•	←	1	4	†	~	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44		7		7	ሻ	ተተ _ጉ		ሻ	ተተ _ጉ	
Traffic Volume (vph)	8	0	12	150	0	26	29	1174	146	50	1635	35
Future Volume (vph)	8	0	12	150	0	26	29	1174	146	50	1635	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Lane Util. Factor		1.00		1.00		1.00	1.00	0.91		1.00	0.91	
Frt		0.92		1.00		0.85	1.00	0.98		1.00	1.00	
Flt Protected		0.98		0.95		1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1675		1770		1583	1770	5001		1770	5070	
Flt Permitted		0.98		0.74		1.00	0.11	1.00		0.17	1.00	
Satd. Flow (perm)		1675		1385		1583	210	5001		325	5070	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	8	0	12	156	0	27	30	1223	152	52	1703	36
RTOR Reduction (vph)	0	18	0	0	0	23	0	7	0	0	1	0
Lane Group Flow (vph)	0	3	0	156	0	4	30	1368	0	52	1738	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		22.3		22.3		22.3	116.2	116.2		116.2	116.2	
Effective Green, g (s)		22.3		22.3		22.3	116.2	116.2		116.2	116.2	
Actuated g/C Ratio		0.15		0.15		0.15	0.77	0.77		0.77	0.77	
Clearance Time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Vehicle Extension (s)		3.0		3.0		3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		249		205		235	162	3874		251	3927	
v/s Ratio Prot								0.27			c0.34	
v/s Ratio Perm		0.00		c0.11		0.00	0.14			0.16		
v/c Ratio		0.01		0.76		0.02	0.19	0.35		0.21	0.44	
Uniform Delay, d1		54.5		61.3		54.5	4.4	5.2		4.5	5.8	
Progression Factor		1.00		1.00		1.00	1.00	1.00		0.52	0.61	
Incremental Delay, d2		0.0		15.3		0.0	2.5	0.3		1.6	0.3	
Delay (s)		54.5		76.6		54.5	7.0	5.5		4.0	3.9	
Level of Service		D		E		D	Α	Α		Α	Α	
Approach Delay (s)		54.5			73.3			5.5			3.9	
Approach LOS		D			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.6	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.49									
Actuated Cycle Length (s)			150.0	S	um of lost	time (s)			11.5			
Intersection Capacity Utiliza	ation		65.3%		U Level)		С			
Analysis Period (min)			15									
o Critical Lang Group												

	۶	-	*	1	4	4	4	†	1	1	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		N.		7	7	ተ ቀጭ		ሻ	ተ ቀጭ	
Traffic Volume (vph)	6	0	8	207	0	23	44	1404	190	26	1201	9
Future Volume (vph)	6	0	8	207	0	23	44	1404	190	26	1201	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Lane Util. Factor		1.00		1.00		1.00	1.00	0.91		1.00	0.91	
Frt		0.92		1.00		0.85	1.00	0.98		1.00	1.00	
Flt Protected		0.98		0.95		1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684		1770		1583	1770	4994		1770	5080	
FIt Permitted		0.98		0.75		1.00	0.17	1.00		0.10	1.00	
Satd. Flow (perm)		1684		1392		1583	326	4994		190	5080	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	0	9	230	0	26	49	1560	211	29	1334	10
RTOR Reduction (vph)	0	13	0	0	0	21	0	8	0	0	0	0
Lane Group Flow (vph)	0	3	0	230	0	5	49	1763	0	29	1344	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		30.5		30.5		30.5	108.0	108.0		108.0	108.0	
Effective Green, g (s)		30.5		30.5		30.5	108.0	108.0		108.0	108.0	
Actuated g/C Ratio		0.20		0.20		0.20	0.72	0.72		0.72	0.72	
Clearance Time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Vehicle Extension (s)		3.0		3.0		3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		342		283		321	234	3595		136	3657	
v/s Ratio Prot								c0.35			0.26	
v/s Ratio Perm		0.00		c0.17		0.00	0.15			0.15		
v/c Ratio		0.01		0.81		0.02	0.21	0.49		0.21	0.37	
Uniform Delay, d1		47.7		57.0		47.8	6.9	9.1		6.9	8.0	
Progression Factor		1.00		1.00		1.00	1.00	1.00		0.72	0.78	
Incremental Delay, d2		0.0		16.1		0.0	2.0	0.5		3.5	0.3	
Delay (s)		47.7		73.1		47.8	8.9	9.6		8.5	6.5	
Level of Service		D		E		D	Α	Α		Α	Α	
Approach Delay (s)		47.7			70.6			9.6			6.6	
Approach LOS		D			Е			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			13.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.56									
Actuated Cycle Length (s)			150.0	SI	um of los	t time (s)			11.5			
Intersection Capacity Utiliza	tion		63.4%	IC	U Level	of Service			В			
Analysis Period (min)			15									
- O-!!!!! O												

c Critical Lane Group

<u> </u>	۶	-	~	•	—	•	1	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€1 }		14.14	₽		7	ተተ	7	7	ተተኈ	
Traffic Volume (veh/h)	31	94	138	485	68	2	98	758	376	28	1079	45
Future Volume (veh/h)	31	94	138	485	68	2	98	758	376	28	1079	45
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	33	100	147	516	72	2	104	806	400	30	1148	48
Adj No. of Lanes	0	2	0	2	1	0	1	2	1	1	3	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	50	150	172	593	311	9	290	1859	832	268	2540	106
Arrive On Green	0.11	0.11	0.11	0.17	0.17	0.17	0.04	0.53	0.53	0.02	0.51	0.51
Sat Flow, veh/h	457	1383	1583	3442	1804	50	1774	3539	1583	1774	5007	209
Grp Volume(v), veh/h	133	0	147	516	0	74	104	806	400	30	777	419
Grp Sat Flow(s),veh/h/ln	1840	0	1583	1721	0	1854	1774	1770	1583	1774	1695	1826
Q Serve(g_s), s	10.4	0.0	13.7	21.9	0.0	5.2	4.2	21.0	24.1	1.2	22.0	22.0
Cycle Q Clear(g_c), s	10.4	0.0	13.7	21.9	0.0	5.2	4.2	21.0	24.1	1.2	22.0	22.0
Prop In Lane	0.25		1.00	1.00		0.03	1.00		1.00	1.00		0.11
Lane Grp Cap(c), veh/h	200	0	172	593	0	320	290	1859	832	268	1720	926
V/C Ratio(X)	0.67	0.00	0.85	0.87	0.00	0.23	0.36	0.43	0.48	0.11	0.45	0.45
Avail Cap(c_a), veh/h	245	0	211	837	0	451	376	1859	832	291	1720	926
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	64.2	0.0	65.7	60.4	0.0	53.5	18.3	21.9	22.6	18.0	23.6	23.6
Incr Delay (d2), s/veh	4.9	0.0	23.7	7.2	0.0	0.4	0.7	0.7	2.0	0.2	0.9	1.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.6	0.0	7.1	11.0	0.0	2.7	2.1	10.5	11.0	0.6	10.5	11.5
LnGrp Delay(d),s/veh	69.1	0.0	89.4	67.6	0.0	53.9	19.0	22.6	24.6	18.2	24.5	25.2
LnGrp LOS	Е		F	Е		D	В	С	С	В	С	С
Approach Vol, veh/h		280			590			1310			1226	
Approach Delay, s/veh		79.8			65.9			22.9			24.6	
Approach LOS		E			Ε			С			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.1	85.3		22.3	11.8	82.6		33.4				
Change Period (Y+Rc), s	5.5	6.5		6.0	5.5	6.5		7.5				
Max Green Setting (Gmax), s	5.5	62.5		20.0	13.5	54.5		36.5				
Max Q Clear Time (g_c+l1), s	3.2	26.1		15.7	6.2	24.0		23.9				
Green Ext Time (p_c), s	0.0	8.7		0.6	0.1	9.8		2.0				
Intersection Summary												
HCM 2010 Ctrl Delay			35.6									
HCM 2010 LOS			D									

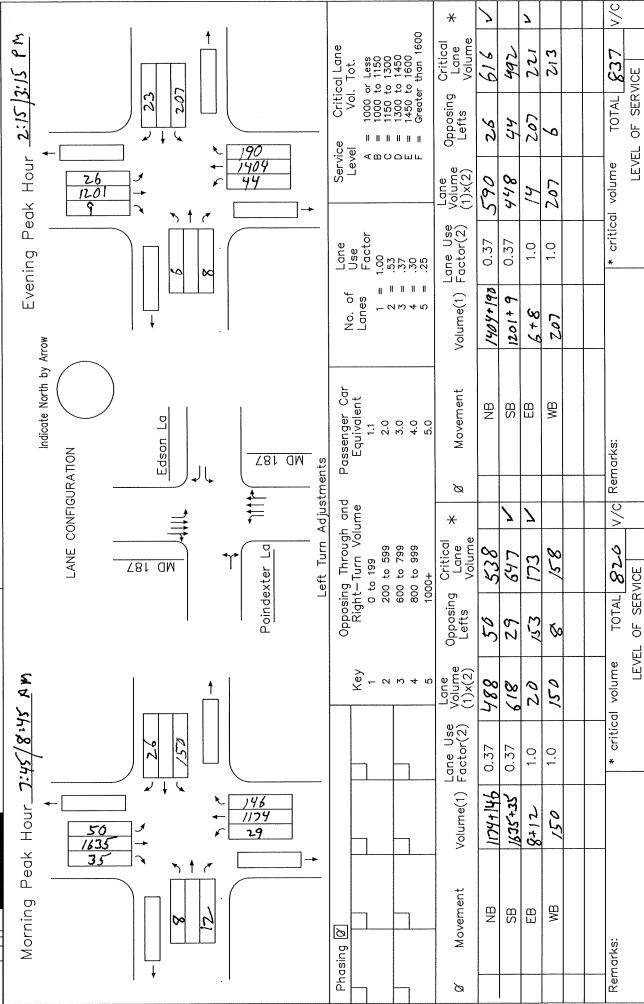
	۶	→	*	*	4	1	1	†	<i>></i>	1	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		41		14.56	₽		75	44	7"	ሻ	ተ ቀ↑	
Traffic Volume (veh/h)	9	20	20	330	45	12	62	711	293	31	735	32
Future Volume (veh/h)	9	20	20	330	45	12	62	711	293	31	735	32
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	10	22	22	363	49	13	68	781	322	34	808	35
Adj No. of Lanes	0	2	0	2	1	0	1	2	1	1	3	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	19	42	42	435	179	48	477	2296	1027	372	3212	139
Arrive On Green	0.03	0.03	0.03	0.13	0.13	0.13	0.03	0.65	0.65	0.03	0.64	0.64
Sat Flow, veh/h	643	1411	1393	3442	1420	377	1774	3539	1583	1774	4999	216
Grp Volume(v), veh/h	28	0	26	363	0	62	68	781	322	34	547	296
Grp Sat Flow(s), veh/h/ln	1831	0	1617	1721	0	1796	1774	1770	1583	1774	1695	1825
Q Serve(g_s), s	2.3	0.0	2.3	15.5	0.0	4.7	1.9	14.9	13.5	1.0	10.3	10.4
Cycle Q Clear(g_c), s	2.3	0.0	2.3	15.5	0.0	4.7	1.9	14.9	13.5	1.0	10.3	10.4
Prop In Lane	0.35		0.86	1.00		0.21	1.00		1.00	1.00		0.12
Lane Grp Cap(c), veh/h	55	0	48	435	0	227	477	2296	1027	372	2178	1172
V/C Ratio(X)	0.52	0.00	0.53	0.84	0.00	0.27	0.14	0.34	0.31	0.09	0.25	0.25
Avail Cap(c_a), veh/h	232	0	205	769	0	401	545	2296	1027	416	2178	1172
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	71.7	0.0	71.7	64.0	0.0	59.3	8.7	11.9	11.6	9.1	11.4	11.4
Incr Delay (d2), s/veh	7.5	0.0	8.7	4.3	0.0	0.6	0.1	0.4	8.0	0.1	0.3	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.3	0.0	1.2	7.6	0.0	2.4	1.0	7.4	6.1	0.5	4.9	5.3
LnGrp Delay(d),s/veh	79.2	0.0	80.4	68.3	0.0	59.9	8.8	12.3	12.4	9.2	11.7	12.0
LnGrp LOS	E		F	E		E	Α	В	В	A	В	B
Approach Vol, veh/h		54			425			1171			877	
Approach Delay, s/veh		79.8			67.1			12.1			11.7	
Approach LOS		Е			E			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.3	103.8		10.5	10.2	102.9		26.4				
Change Period (Y+Rc), s	5.5	6.5		6.0	5.5	6.5		7.5				
Max Green Setting (Gmax), s	7.5	64.5		19.0	10.5	61.5		33.5				
Max Q Clear Time (g_c+l1), s	3.0	16.9		4.3	3.9	12.4		17.5				
Green Ext Time (p_c), s	0.0	8.2		0.2	0.1	6.7		1.5				
Intersection Summary												
HCM 2010 Ctrl Delay			22.7									
HCM 2010 LOS			C									

	۶	-	~	1	-	•	1	†	~	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		7	ሶ β			4			4	
Traffic Volume (veh/h)	13	659	30	2	669	7	59	4	14	11	2	67
Future Volume (veh/h)	13	659	30	2	669	7	59	4	14	11	2	67
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	15	740	34	2	752	8	66	4	16	12	2	75
Adj No. of Lanes	1	2	0	1	2	0	0	1	0	0	1	0
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	142	952	44	124	940	10	658	44	147	132	45	750
Arrive On Green	0.02	0.28	0.28	0.00	0.26	0.26	0.57	0.57	0.57	0.57	0.57	0.57
Sat Flow, veh/h	1774	3446	158	1774	3587	38	1059	78	260	167	80	1324
Grp Volume(v), veh/h	15	380	394	2	371	389	86	0	0	89	0	0
Grp Sat Flow(s), veh/h/ln	1774	1770	1835	1774	1770	1856	1397	0	0	1572	0	0
Q Serve(g_s), s	0.7	21.8	21.8	0.1	21.5	21.5	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.7	21.8	21.8	0.1	21.5	21.5	2.4	0.0	0.0	2.8	0.0	0.0
Prop In Lane	1.00		0.09	1.00		0.02	0.77		0.19	0.13		0.84
Lane Grp Cap(c), veh/h	142	489	507	124	464	486	850	0	0	928	0	0
V/C Ratio(X)	0.11	0.78	0.78	0.02	0.80	0.80	0.10	0.00	0.00	0.10	0.00	0.00
Avail Cap(c_a), veh/h	257	869	901	265	869	911	850	0	0	928	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.62	0.62	0.62	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	31.0	36.7	36.7	31.6	37.9	37.9	10.8	0.0	0.0	10.9	0.0	0.0
Incr Delay (d2), s/veh	0.2	1.7	1.6	0.1	3.2	3.1	0.2	0.0	0.0	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	10.9	11.3	0.0	10.9	11.4	1.3	0.0	0.0	1.3	0.0	0.0
LnGrp Delay(d),s/veh	31.2	38.4	38.3	31.7	41.1	41.0	11.1	0.0	0.0	11.1	0.0	0.0
LnGrp LOS	С	D	D	С	D	D	В			В		
Approach Vol, veh/h		789			762			86			89	
Approach Delay, s/veh		38.2			41.0			11.1			11.1	
Approach LOS		D			D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		68.3	5.3	36.4		68.3	6.8	34.8				
Change Period (Y+Rc), s		6.0	5.0	6.0		6.0	5.0	6.0				
Max Green Setting (Gmax), s		30.0	9.0	54.0		30.0	9.0	54.0				
Max Q Clear Time (g_c+l1), s		4.4	2.1	23.8		4.8	2.7	23.5				
Green Ext Time (p_c), s		0.4	0.0	5.4		0.5	0.0	5.3				
Intersection Summary												
HCM 2010 Ctrl Delay			36.7									
HCM 2010 LOS			D									

	•	-	*	V	4	1	1	†	<i>></i>	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		ħ	∱ î≽			4			4	
Traffic Volume (veh/h)	29	480	32	3	477	8	10	0	25	1	2	16
Future Volume (veh/h)	29	480	32	3	477	8	10	0	25	1	2	16
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	34	565	38	4	561	9	12	0	29	1	2	19
Adj No. of Lanes	1	2	0	1	2	0	0	1	0	0	1	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	162	761	51	131	720	12	296	21	664	57	112	851
Arrive On Green	0.03	0.23	0.23	0.01	0.20	0.20	0.61	0.00	0.61	0.61	0.61	0.61
Sat Flow, veh/h	1774	3366	226	1774	3565	57	413	35	1082	37	182	1386
Grp Volume(v), veh/h	34	297	306	4	278	292	41	0	0	22	0	0
Grp Sat Flow(s), veh/h/ln	1774	1770	1823	1774	1770	1853	1529	0	0	1605	0	0
Q Serve(g_s), s	1.7	17.1	17.2	0.2	16.4	16.4	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.7	17.1	17.2	0.2	16.4	16.4	1.1	0.0	0.0	0.6	0.0	0.0
Prop In Lane	1.00		0.12	1.00		0.03	0.29		0.71	0.05		0.86
Lane Grp Cap(c), veh/h	162	400	412	131	357	374	982	0	0	1020	0	0
V/C Ratio(X)	0.21	0.74	0.74	0.03	0.78	0.78	0.04	0.00	0.00	0.02	0.00	0.00
Avail Cap(c_a), veh/h	287	869	895	300	869	909	982	0	0	1020	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.89	0.89	0.89	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	34.4	39.6	39.6	35.6	41.6	41.6	8.4	0.0	0.0	8.3	0.0	0.0
Incr Delay (d2), s/veh	0.6	2.4	2.4	0.1	3.7	3.6	0.1	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.8	8.7	9.0	0.1	8.4	8.8	0.5	0.0	0.0	0.3	0.0	0.0
LnGrp Delay(d),s/veh	35.0	42.0	42.0	35.7	45.3	45.1	8.5	0.0	0.0	8.3	0.0	0.0
LnGrp LOS	С	D	D	D	D	D	Α			Α		
Approach Vol, veh/h		637			574			41			22	
Approach Delay, s/veh		41.6			45.1			8.5			8.3	
Approach LOS		D			D			A			A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		73.6	5.6	30.9		73.6	8.2	28.2				
Change Period (Y+Rc), s		6.0	5.0	6.0		6.0	5.0	6.0				
Max Green Setting (Gmax), s		28.0	11.0	54.0		28.0	11.0	54.0				
Max Q Clear Time (g_c+l1), s		3.1	2.2	19.2		2.6	3.7	18.4				
Green Ext Time (p_c), s		0.2	0.0	4.1		0.1	0.0	3.8				
Intersection Summary												
HCM 2010 Ctrl Delay			41.6		-	-	Mark Carlos Street	-				
HCM 2010 LOS			D									
TION ZUTU, LOG			D									

			*	7	7	·	\/C
	3:/5 /3	Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	503	757	7.7	SSC
187 @		0 0 0 0 0 0 8	Opposing Lefts	7,766	227	}	TOTAL SE
Location: MD 187 NB I 270 Ramp	→ /675 0 ± //20 →	Service Level Door	Lane Volume (1)x(2)	503	280	7.2	critical volume
	Evening Peak	Lane Use Factor 1.00 .53 .37	Lane Use Factor(2)	0.3	0.25		* critica
88	 	No. of Lanes 1 8 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Volume(1) F	1675	07/1	200	-
$\overline{1/}$ $L/26/19$ Existing Traffic Volumes MN Date:	ATION ATION Ramp Ramp Bants	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement V.		SB		arks:
1 1 1	LANE CONFIGURATION NB Ran NB Ran Left Turn Adjustments		Ø				C Remarks:
Count Date: _ Conditions/ Design Year: Computed By	The Adji	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999	X		7 7	1	\/\ \
Con	## LAND 187 LAN	sing Throu ht-Turn \ 0 to 199 200 to 599 600 to 799 800 to 999	Critical Lane Volume	348	549	0	6/6 WICE
UMMARY CE		Opposition Opposition	Opposing Lefts	1 2.862	a 1		TOTAL 6/
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE	18:30 AW	X + 2 % + 2	Lane Volume (1)x(2)	348	196	/ 0	al volume LEVEL
RNING MOVEM ANE			Lane Use Factor(2)	0.3	0.25)	* critical
	1844 + 1180 1844 + 147		Volume(1)	09//	71.25	0//10/	
	Morning Ped A	Phasing @	Ø Movement	NB I	SB		Remarks:

	1 1								X		7	7	7			O/ /	
		2:15/3:15 PM			<u>†</u>	Critical Lane Vol. Tot.	or Less to 1150 to 1300	o 1450 o 1600 - than 1600	Critical Lane Volume	555	673	743	202			∞_	
187 @	La	1 .		337	274		 	H H H	Opposing Lefts	$\mathcal{C}_{\mathcal{C}}$	189	1	1			TOTAL //	
Location: MD	Tuckerman	uk Hour	53		← 1349	Service	< m ∪ i		Lane Volume (1)x(2)	499	484	24/	202			l volume	LL v L
	기	Evening Peak			257	Lane	Factor 1.00 .53	.37 .30 .25	Lane Use Factor(2)	0.37	0.37	0.53	0,83,6		- 1	* critical	
	les					No. of	Lanes 1 = 2 =	ω4ω ∥∥∥	Volume(1)	/349	86/+0111	259+156+1M	337				
hor 2/1/19	Existing Traffic Volumes MN	Indicate North by Arrow	NOL	Tuckerman La		Passenger Car	1.1 2.0	ი 4 ც ი ი ი	Movement	NB	SB	EB	WB		1.	Remarks:	and the second s
7			GURA1		JIIII S				ø								
Date	ions/ Year		CONFI	₹		an de	D 5 5		*		7	7	7		-	0//	
Count Date:	Conditions/ Design Year: Computed By		LANE CONFIGURATION	781 QM		Opposing Through and	0 to 199 200 to 599	600 to 799 800 to 999 1000+	Critical Lane Volume	844	794	310	374			7978	VICE
UMMARY	Li C	7			Tuckerman	Opposit	200	8 8 5	Opposing Lefts	37	99/	J	1			TOTAL /9	
EMENT SI	AND OF SFRVICE	S S			<u>†</u>	3	2 - Ç	w 4 rv	Lane Volume (1)x(2)	/1/	829	310	374			critical volume	LEVEL
TURNING MOVEMENT SUMMARY	, EVE	:30/8:30		66 49 103		Jeksaman LA			Lane Use Factor(2)	0.37	0.37	0.53	2.53.6		- 1	* critico	
TUF	5	Peak Hour 7:30/8:30	37 1576)	₹ 306 ₹ 1110 € 166	an Tucker			Volume(1)	0111	71/5/51	450+135	523				
		Morning Peak	122			Phasing @ 50/17 \$	_		Ø Movement	NB NB	SB	EB	WB	And a second sec		Remarks:	STATE OF THE STATE
		ł				1-1		1	•						[I


TURNING MOVEMEN	AND	LEVEL OF SE

T SUMMARY ERVICE

Existing Traffic Volumes Mrd Computed By: MN Conditions/ Design Year: Count Date:

Date:

٥ Poindexter La-Edson Location: MD 187

ı				*	2		>	2	\ \ \
	La	13:15 PM	Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	80h	346	92	198	63 2 VICE
187 @	1 1		O	Opposing Lefts	3/	29	1	J	TOTAL 63
Location: MD	Tilden La-Nicholson	31 7 711 31 7 62 711 32 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Service P A B D D B P B P B P B P B P B P B P B P B	Lane Volume (1)x(2)	377	284	26	861	al volume LEVEL
 		Evening Pe	Lane Use 1.00 1.00 .53 .37	Lane Use Factor(2)	12,72.02	0.37	0.53	9.0	* critical
1	les ::		No. of Lanes 1 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 2	Volume(1)		735432	1+20+20	330	
2/12/19	Existing Traffic Volumes MN Date:	Indicate North by Arrow Nicholson La	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	NB	SB	EB	WB	Remarks:
15		SURAT IZI		Ø					i i
Date:	ions/ Year: ited E	SONFIG.	gh and	*		7	7	7	\/c
Count Date:	Conditions/ Design Year: Computed By	LANE CONFIGURATION Nicho Nic	sing Through and ght—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999 1000+	Critical Lane Volume	08h	115	139	162	949
UMMARY	Ш	Tilden	Opposind Right- 0 t 200 800 800	Opposing Lefts	87	28	١	1	TOTAL 9.
/EMENT S	AND OF SERVICE	F	X - 0 2 4 10	Lane Volume (1)x(2)	704	911	139	167	ol volume LEVEL
TURNING MOVEMENT SUMMARY	LEVEL	2:30/8:31 10:30/8:31	201/18	Lane Use Factor(2)	55.75.0	0.37	0.53	9.0	* critical
TUR		28 - 758 - 98 - 758 - 98 - 758 - 98 - 758	You Michalson -	Volume(1)	258	Sh+6601	31 +44+138	485	
		Morning Pedk	Phasing @Solf #02	Ø Movement	NB	SB	EB	WB	Remarks:

			*	7		7	\/\C
© PJ	3;15 PM	Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	37	274	286	23
Tuckerman		# # # # # # # # # # # # # # # # # # #	Opposing Lefts	/ 2	j ω	29	TOTAL 3
Location: Tu Gloxinia Dr	Y 10 10 10 10 10 10 10 10 10 10 10 10 10	Service Level DOOB PA	Lane Volume (1)x(2)	36	172	257	critical volume
]] []]]	Evening Pe	Lane Use Factor 1.00 .53 .37	Lane Use Factor(2)	1.0	0.53	0.53	* critic
.:	 	No. of Lanes 1 = 2 = 3 = 1 = 5 = 1 = 5	Volume(1)	12:11	480+32	477+8	
Existing Traffic Volumes MN Date:	Indicate North by Arrow Tuckerman La Tucke	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	8 8	EB	WB	arks:
1 1 1	ONFIGURATIO Tuck Ad iustments		Ø				Remarks:
Date: ions/ Year	CONFIG Adio	gh and	*			7	0//
Count Date: Conditions/ Design Year: Computed By	Tuckerman La Left Turn Adjustments	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999	Critical Lane Volume	46	367	37/	5-11
UMMARY	Tucker	Opposii Right O O O O O O O O O O O O O O O O O O O	Opposing Lefts	= 9	۷ ر	73	TOTAL SERVICE
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE		X - 0 w 4 w	(1)×(E	83	366	358	al volume LEVEL
RNING MOVEM AND LEVEL OF	7:30/8:30 MM		Lane Use Factor(2)	1.0	0.53	0.53	* critical
	YD YD YD YD YD YD YD YD YD YD YD YD YD Y		1	41+h+59	659+30	Cr 689	
	Morning Peak	Phasing @	Ø Movement	an co		WB	Remarks:

APPENDIX D PLANNED DEVELOPMENT DATA

Mike Nalepa

From:

Axler, Ed <ed.axler@montgomeryplanning.org>

Sent:

Wednesday, January 16, 2019 9:53 AM

To:

Mike Nalepa

Cc:

Reed, Patrick; Yearwood, Nkosi; Sturgeon, Nancy

Subject:

FW: Woodward High School scope - background developments

Attachments:

Woodward HS background dev. map.pdf

Mike

As we spoke last week, below is a list of the background developments whose site-generated traffic impact the studied intersections (refer to the attached map for the development's location):

Background developments impacting the MD 187/Tilden Lane-Nicholson Lane intersection:

- 1) Pike & Rose/Mid Pike Center Phases I & II #12012002A, #82012002B & #82012002C for approved & unbuilt 734 (from 1,603 approved) high-rise apts. and unbuilt 682,691 sq. ft. office & 143,835 sq. ft. retail (from the approved 816,6275 sq. ft. office, 371,600 sq. ft. retail, 121,750 sq. ft. restaurant, 285,500 sq. ft. hotel/motel, 31,600 sq. ft. health club, & 61,700 sq. ft. cultural/entertainment/recreation space)
 - For Phase I approval #82012002A was for 1,142 apts. & 636,200 sq. ft. of commercial space plus 1,000 sq. ft. of additional general retail space.
 - o For Phase II approval #82013012C was for (original 368 38 amend. C=) 330 apts. & (original 202,115 + 255 amend. C=) 202,370 sq. ft. of commercial space.
- 2) North Bethesda (Town) Center/LCOR #12004049A for 697 unbuilt apts. From the approved for 1,350 mid-rise apartments and unbuilt 809,338 sq. ft. office & 152,791 sq. ft. retail (from the approved 202,037 square feet of retail space, 1,148,000 square feet of office space, and 80,000 square feet of cultural, entertainment/recreation space)
- 3) 6111 Executive Boulevard/Kaiser Foundation Health/Washington Science Center Parcel F concurrently pending amendment to APF201601 for 17,475-? sq. ft. of existing lab space, 11,647-? sq. ft. of (general or R&D??) office, & 38,800-? sq. ft. of new lab space
- 4) Gables at White Flint #120150010 & #82015001A for 476 high-rise apts. & unbuilt 20,890 sq. ft. retail (from approved 31,000 sq. ft. retail space)
- 5) Washington Science Center/6000 Executive Boulevard concurrently pending #120190070, #820180060, & #81973005B+C for 305,641 sq. ft. office, 9,300 sq. ft. retail, 365-unit active senior mid-rise apts. Which includes retaining the existing 21,700 sq. ft. of office space
- 6) Saul Centers White Flint #120160080 for 655 mid-rise apts., unbuilt 136,950 sq. ft. office (from approved 204,000 sq. ft.)
- 7) North Bethesda Market II #120120060 & #82012004A for approved & yet to be built 470 mid-rise apts., unbuilt 103,753 sq. ft. retail (from approved 44,840 sq. ft. office, 13,500 sq. ft. restaurant, & 108,000 sq. ft. retail spaces)
- 8) (East Village) North Bethesda Gateway #120140240 & #820140100 for 614 mid-rise apts. & 35,500 sq. ft. retail

- 9) Luxmanor Elementary School Expansion #MR2018022 for an expansion from 467 to a core capacity of 745 students
- 10) Tilden Middle/Rock Terrace Schools, #MR2014048 to convert a MCPS training center to a core capacity of 1,600 students ---refer to DAIC's page for MR20117014 document, "Transportation Street Traffic Study Report" and the staff memo for the 11/9/17-MCPB hearing: http://montgomeryplanningboard.org/wp-content/uploads/2017/10/november9 MR2017014 Tilden-FINAL-avlb.pdf.

Background developments impacting the MD 187/Tuckerman Lane intersection:

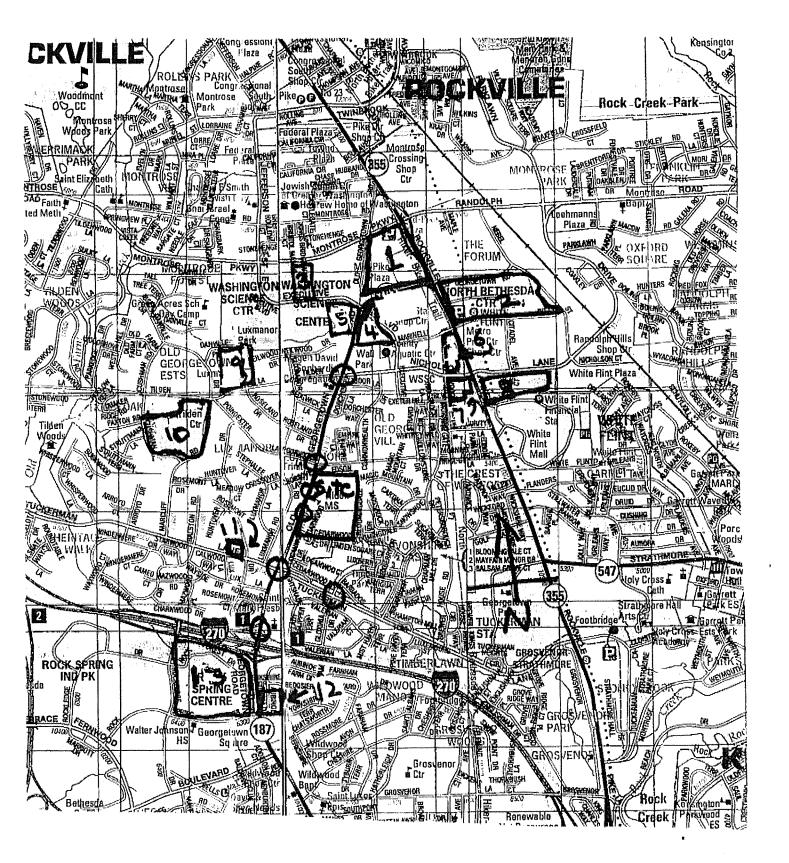
11) Alef Bet Montessori School #APF201802 for 90-students K-8th private school (40 students approved & 50 students concurrently pending)

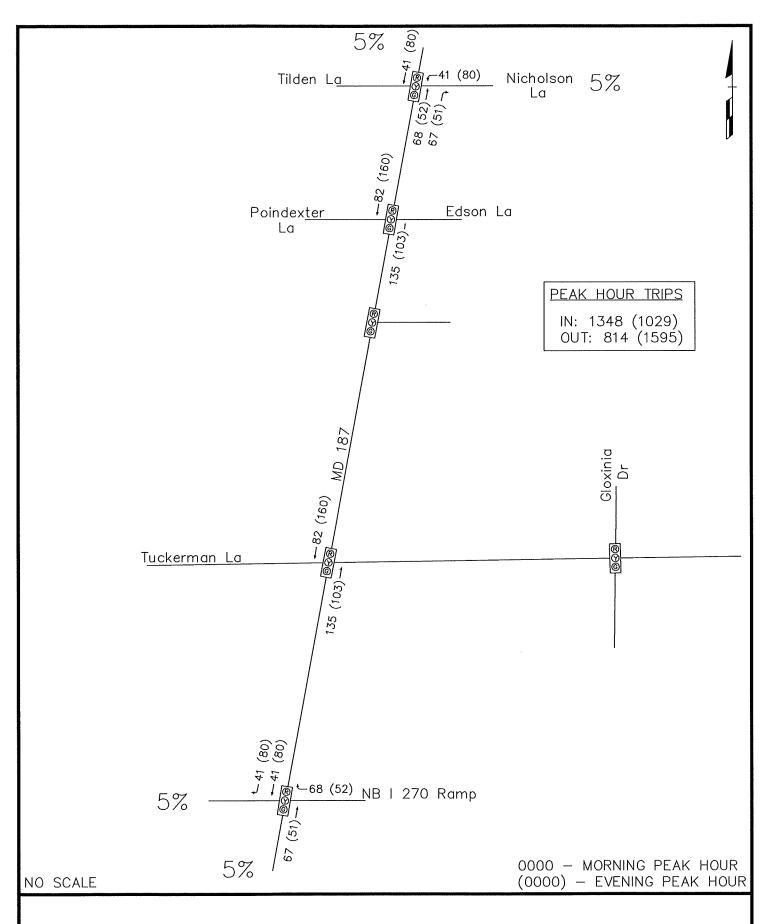
Background developments impacting the MD 187/NB I-270 ramp intersection:

- 12) Wildwood residential #11989271C and #82008024B -- amended to a maximum of 60 mid-rise apartments, 11,000 square feet of retail space that replaces 30,00 sq. ft. of general office with two existing previously approved land uses 1) 36,423 square feet of medical office space and 2) 3,470 square feet of the bank with three drive-through windows
- 13) Rock Spring Center #11998092B for 844 unbuilt of the approved 1,250 mid-rise apts. & not built all of the non-residential land uses (i.e., 90,000 sq. ft. "cultural/entertainment/recreation space, 200,000 sq. Ft. hotel/motel, 549,900 sq. ft. office, 30,000 sq. ft. public use, & 210,000 sq. ft. retail spaces)

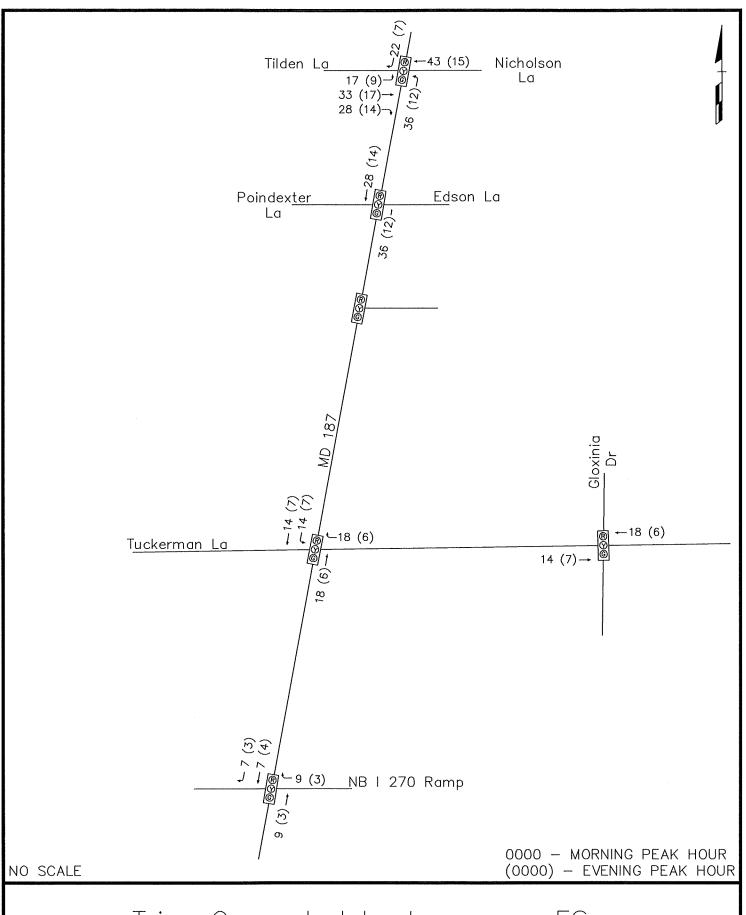
Please note that North Bethesda is an "orange policy area that requires a HCM Analysis. Also, regarding the background developments considered too "small" are the CRI Building & Goddard School and development yet to file preliminary plan is White Flint Mall.

If you have any questions, feel free to contact us. After February 15th, please work with Patrick Reed.

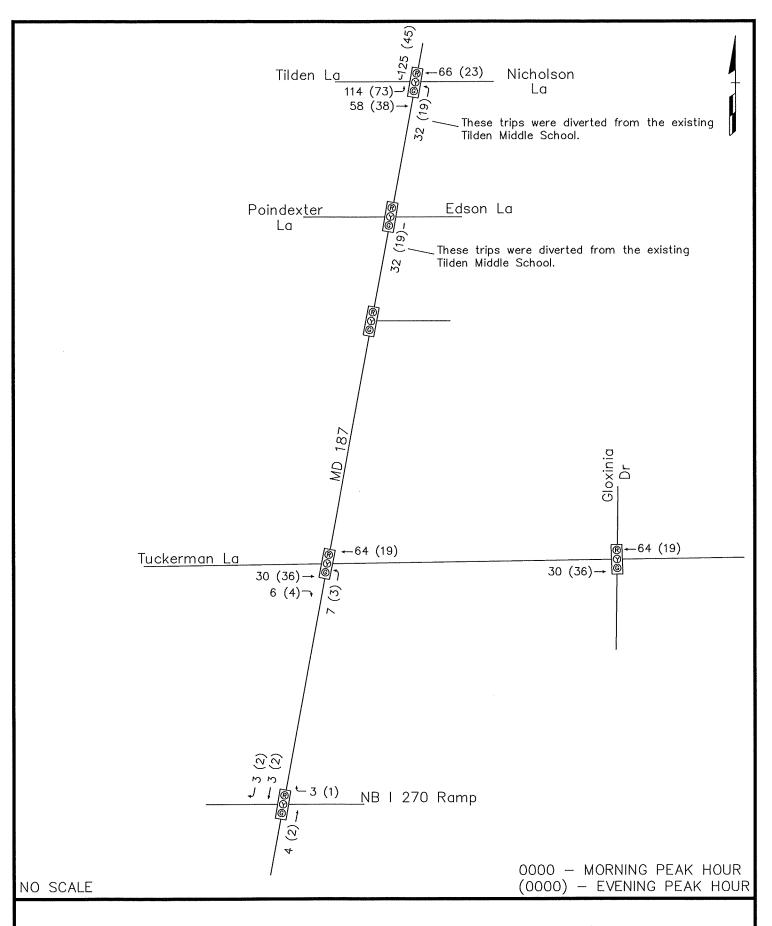

Ed

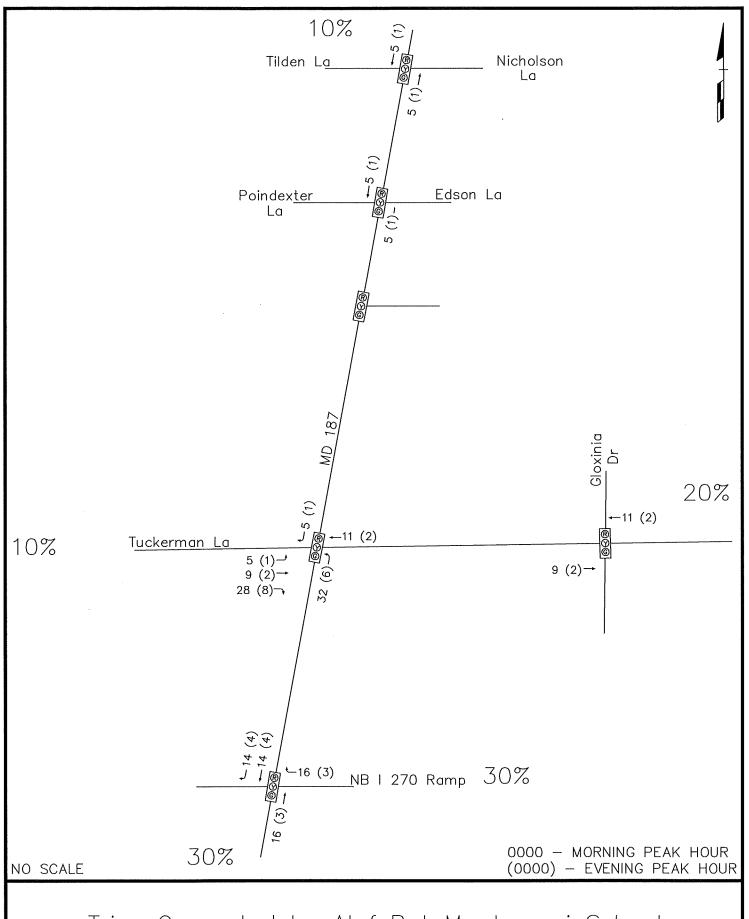

Ed Axler

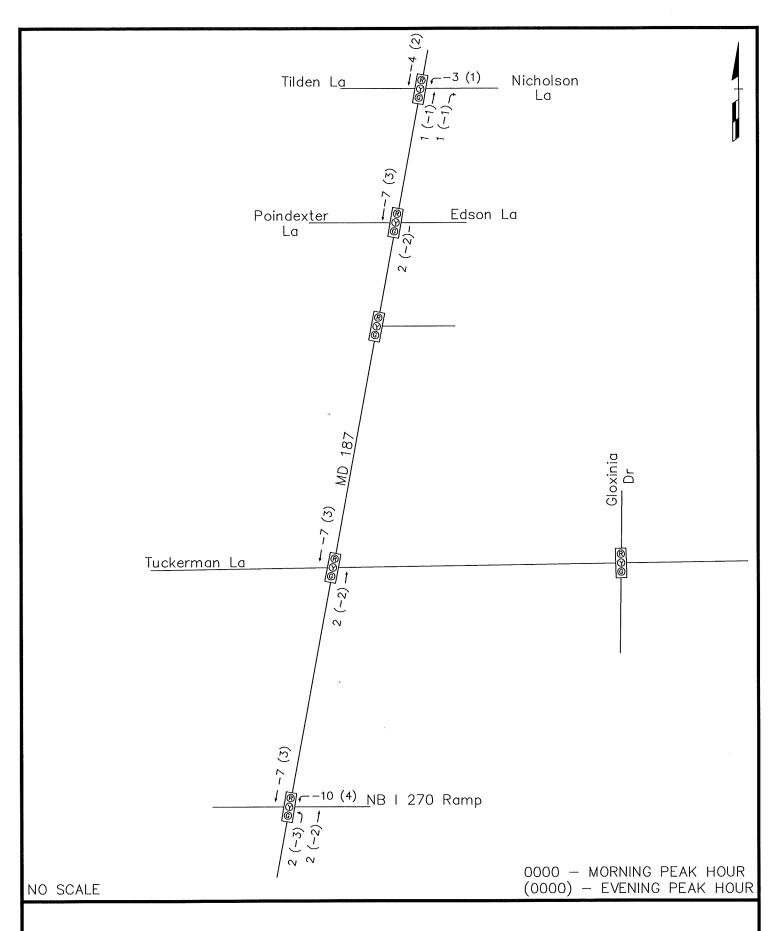
Transportation Master Planner Area 2 Division, Montgomery County Planning Department, M-NCPPC 8787 Georgia Ave, Silver Spring, MD 20910-3760 voice=301-495-4536

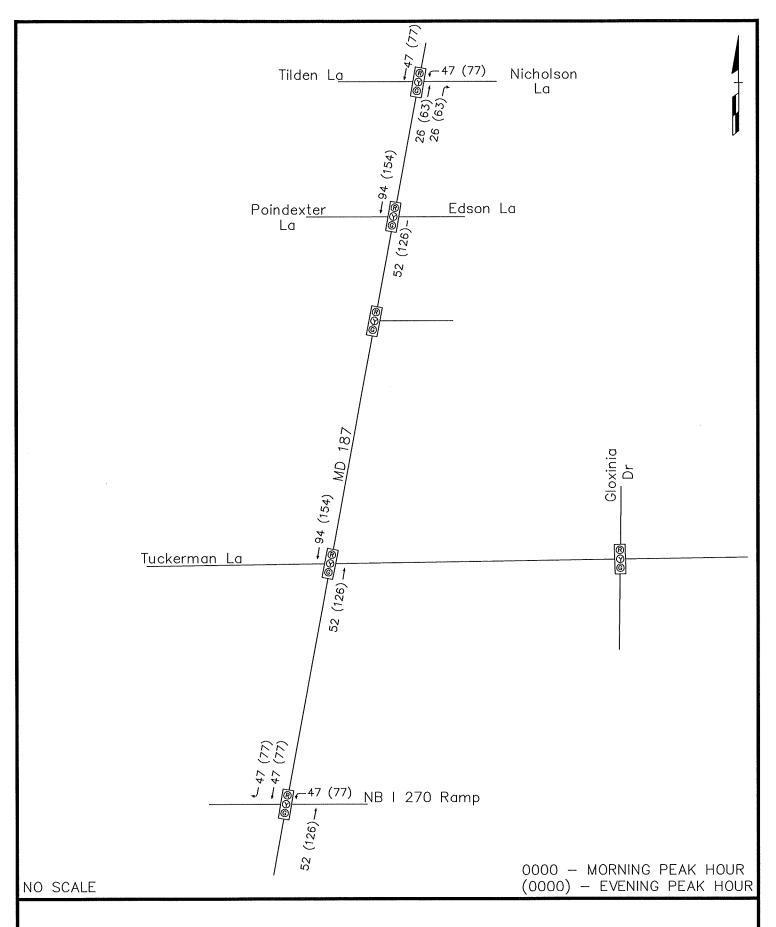

Patrick

Patrick Reed, AICP | Transportation Planner Coordinator Montgomery County Planning Department | Planning Area 2 301.495.4538 | patrick.reed@montgomeryplanning.org




Trips Generated from Developments within the White Flint sector


Trips Generated by Luxmanor ES


Trips Generated by the Rock Terrace ES/Tilden MS

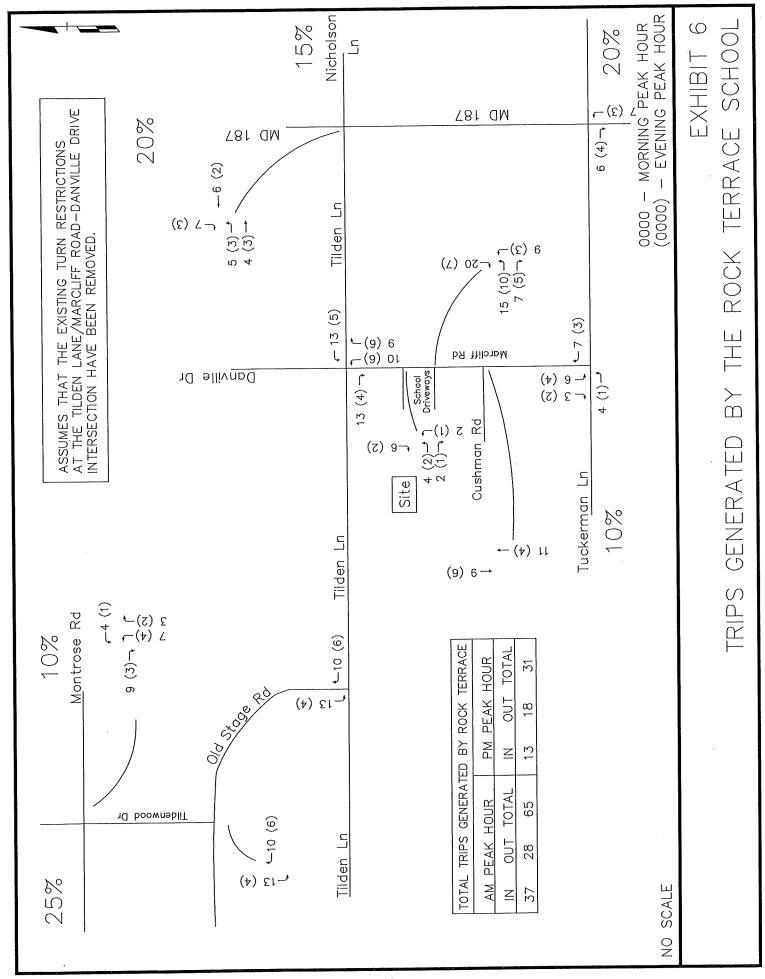
Trips Generated by Alef Bet Montessori School

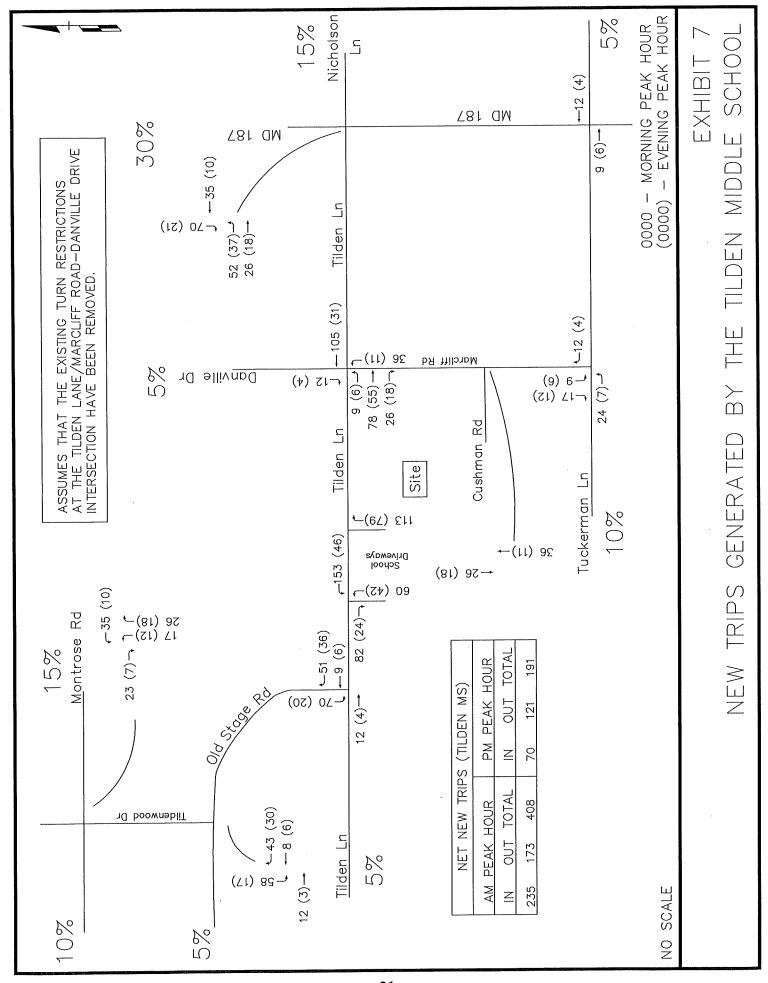
Trips Generated by Wildwood Residential

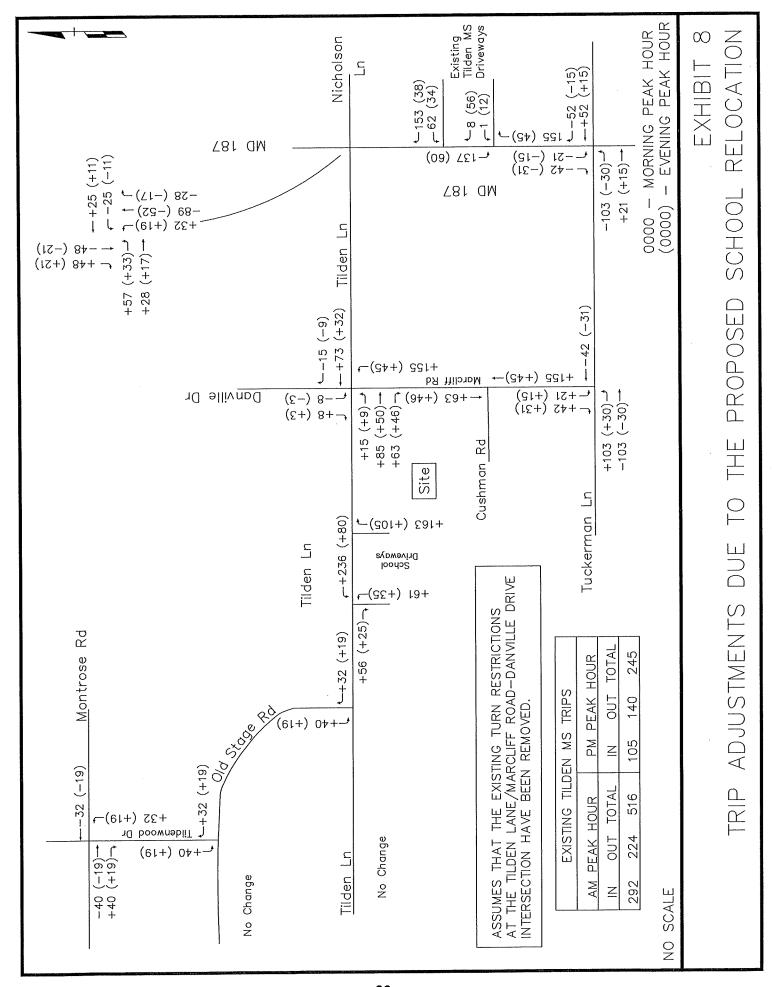
Trips Generated by Rock Spring Center

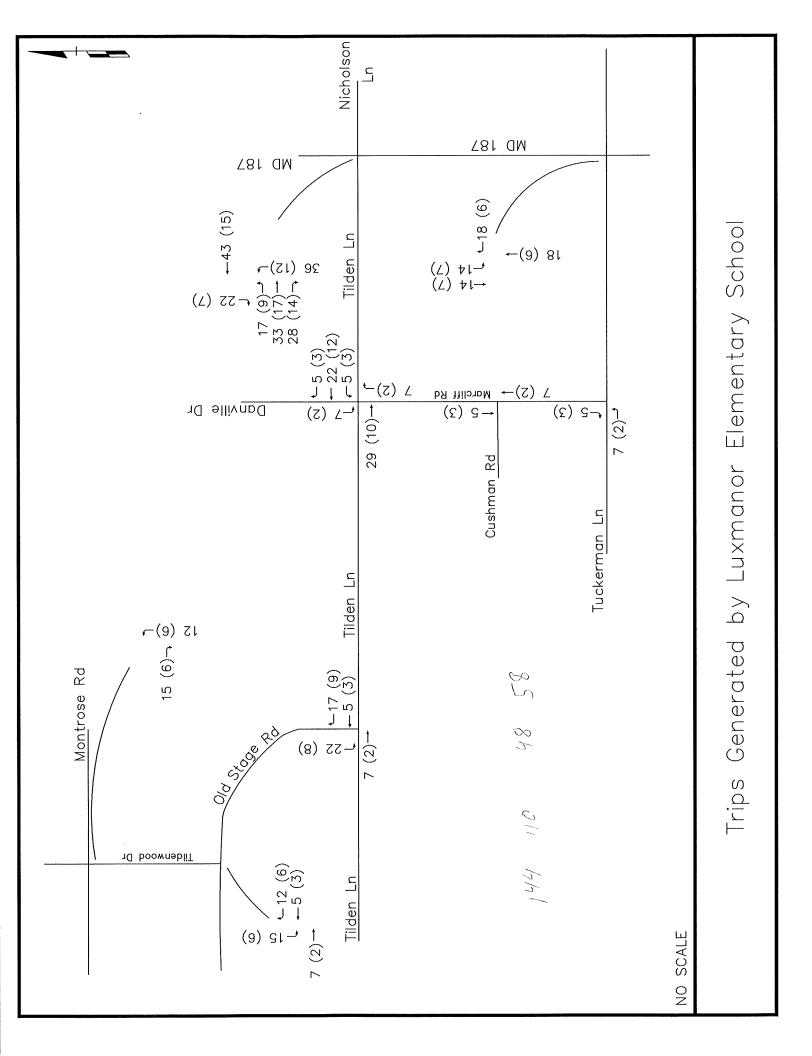
TABLE 5

TRIP GENERATION


EXISTING TILDEN MIDDLE SCHOOL/TILDEN HOLDING CENTER


LAND USE	MOR	NING PE	AK HOUR	EVE	EVENING PEAK HOUR						
	<u>IN</u>	<u>OUT</u>	<u>TOTAL</u>	<u>IN</u>	<u>OUT</u>	<u>TOTAL</u>					
Existing MS Trips											
Trips/797 Students Trips/Student Trips/1600 Students	292 0.37 592	224 0.28 448	516 0.65 1040	105 0.13 208	140 0.18 288	245 0.31 496					
Rock Terrace School Trips/100 Students	37	28	65	13	18	31					
Tilden Middle School Trips/1500 Students Less Ex Tilden Ctr Trips Less Ex Tilden MS Trips Net New Trips	555 -28 <u>-292</u> 235	420 -23 <u>-224</u> 173	975 -51 <u>-516</u> 408	195 -20 <u>-105</u> 70	270 -9 <u>-140</u> 121	465 -29 <u>-245</u> 191					


The above trips were generated during the peak hours analyzed for this use, 7:30 to 8:30 AM and 2:30 to 3:30PM.


As noted earlier, there are existing turn restrictions in place at the Tilden Lane/Marcliff Road-Danville Drive and Tuckerman Lane/Marcliff Road intersections. With the development of this project it is recommended that the restrictions be removed to provide easy access to the schools. However if the restrictions are not removed, adjustments to the assignments will be necessary. Therefore, trips were assigned to the road network under both scenarios. Exhibits 6 and 6A show the trips generated by the Rock Terrace School, Exhibits 7 and 7A show the new trips generated by the Tilden Middle School and Exhibits 8 and 8A show the reassignment of the existing trips generated by the Tilden Middle School along MD 187.

These trips were added to the Background Traffic Volumes resulting in the Total Traffic Volumes as shown in Exhibits 9 and 9A. The total traffic volumes at the school access points are shown in Exhibits 9 and 9A. The total traffic volumes were then evaluated using the same methodology as for the previous step. The results of the analyses are shown in Table 6.

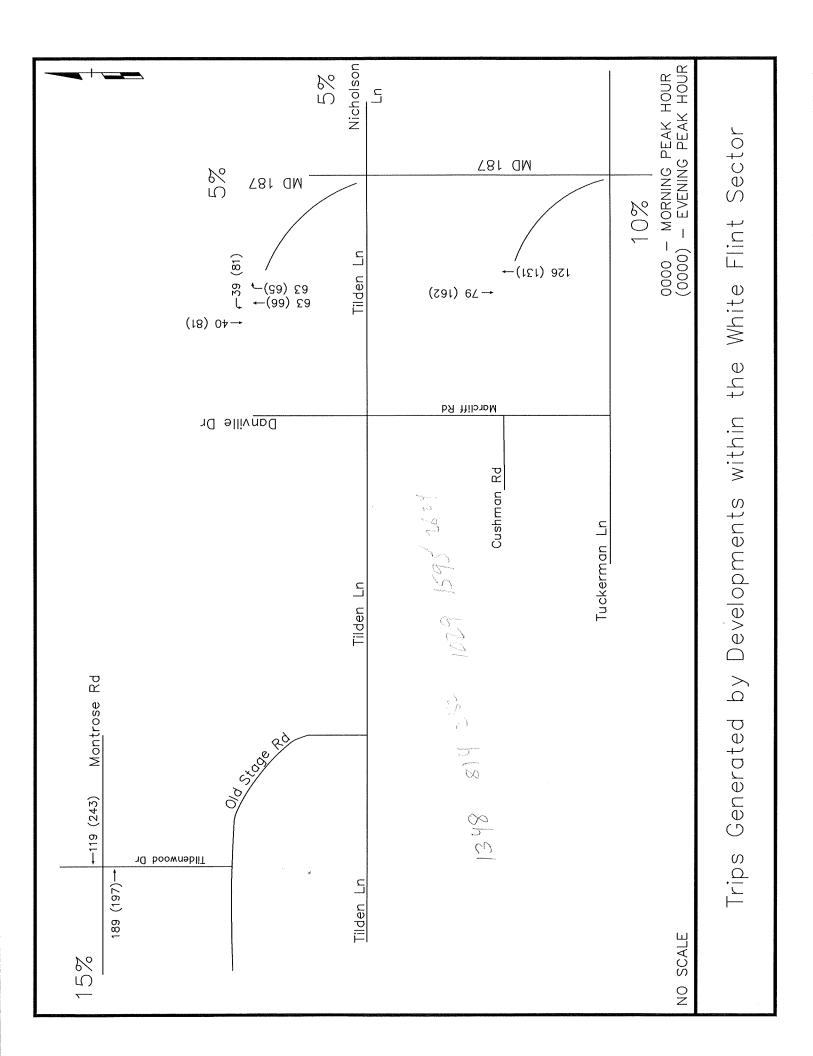


EXHIBIT 7 SITE GENERATED TRAFFIC

WILDWOOD MANOR SHOPPING CENTER PRELIMINARY PLAN AMENDMENT NO. 11989271C

TABLE 4 BACKGROUND TRIP GENERATION

Development	Moi	ning Peak	Hour	Evening Peak Hour				
	In	Out	Total	In	Out	Total		
Rock Spring Trips/60 Townhouses	6	18	24	19	12	31		
Rock Spring Center Trips/844 Mid Rise APTS Trips/549,900 SF Office Trips/210,000 SF Retail (34% PM Intercept) Net New Trips Trips/200 Room Hotel Trips/90,000 Movie Theater	59 405 112 46 10	170 66 67 32 10	229 471 179 78 20	173 80 320 109 211 52 521	111 420 347 118 229 50 33	284 500 667 127 440 102 554		
Wildwood Residential Trips/30,000 SF Office	41	. 7	48	. 5	26	31		
5400 Grosvenor Trips/67 Townhomes	6	22	28	22	12	34		
Brightview Grosvenor Trips/104 Assisted Living	11	6	17	8	14	22		
WMAL Trips/150 Townhomes Trips/159 SFD	13 25	45 73	58 98	44 83	27 48	71 131		
Wildwood Shopping Center Trips/3,692 sit down restaurant	20	17	37	22	14.	36		

be 227

TABLE 3 BACKGROUND DEVELOPMENT

Development	Land Use	Density
. Rockspring	Townhomes	168 DU's approved 60 DU'S unbuilt
2. Rock Spring Center	Mid Rise Residential General Office General Retail Hotel Community Center Movie Theater	844 DU's 549,900 SF 210,00 SF 200 Rooms 30,000 SF 90,000 SF
3. Wildwood Residential	General Office	30,000 SF
4. 5400 Grosvenor	Townhomes Single Family DU Community Office	143 DU's (67 DU's unbuilt) 12 DU's - Complete 31,931 SF - Complete
5. Brightview Grosvenor	Assisted Living	140 beds
6. WMAL	Townhomes Single Family DU	150 DU's 159 SFD
7. Wildwood Shopping Center	Retail	88,430 SF Approved 3,692 Unbuilt

Trip Generation

To determine the traffic associated with each of the background developments, trip generation rates were taken from the ITE Trip Generation publication, 10th Edition, with copies of specific worksheets in Appendix D. The resulting trips will adjusted based on the applicable factors contained in the LATR guidelines for land uses in North Bethesda.

The trips generated are shown in Table 4.

APPENDIX E CAPACITY CALCULATIONS - BACKGROUND CONDITIONS

	۶	→	*	•	←	1	1	†	<i>></i>	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	र्स	7	14.14	1111			11111	7"
Traffic Volume (vph)	0	0	0	150	13	625	149	1310	0	0	1949	866
Future Volume (vph)	0	0	0	150	13	625	149	1310	0	0	1949	866
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Lane Util. Factor				0.95	0.95	1.00	0.97	0.86			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1681	1698	1583	3433	6408			7544	1583
Flt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1681	1698	1583	3433	6408			7544	1583
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	161	14	672	160	1409	0	0	2096	931
RTOR Reduction (vph)	0	0	0	0	0	41	0	0	0	0	0	470
Lane Group Flow (vph)	0	0	0	87	88	631	160	1409	0	0	2096	461
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				61.8	61.8	61.8	8.7	74.2			59.0	59.0
Effective Green, g (s)				61.8	61.8	61.8	8.7	74.2			59.0	59.0
Actuated g/C Ratio				0.41	0.41	0.41	0.06	0.49			0.39	0.39
Clearance Time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				692	699	652	199	3169			2967	622
v/s Ratio Prot							c0.05	0.22			0.28	
v/s Ratio Perm				0.05	0.05	c0.40						c0.29
v/c Ratio				0.13	0.13	0.97	0.80	0.44			0.71	0.74
Uniform Delay, d1				27.3	27.3	43.1	69.8	24.6			38.2	39.0
Progression Factor				1.00	1.00	1.00	1.00	1.00			1.03	1.65
Incremental Delay, d2				0.1	0.1	27.2	20.5	0.5			0.7	4.0
Delay (s)				27.4	27.4	70.3	90.3	25.0			39.9	68.2
Level of Service				С	С	Е	F	С			D	E
Approach Delay (s)		0.0			61.5			31.7			48.6	
Approach LOS		Α			E			С			D	
Intersection Summary												
HCM 2000 Control Delay			45.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.85									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			20.5			
Intersection Capacity Utilization	on		79.5%			of Service)		D			
Analysis Period (min)			15									
- Critical Lang Croup												

c Critical Lane Group

	۶	-	*	1	-	1	4	†	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1	स	7	1/1/	1111			11111	7
Traffic Volume (vph)	0	0	0	166	8	308	284	1858	0	0	1290	624
Future Volume (vph)	0	0	0	166	8	308	284	1858	0	0	1290	624
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Lane Util. Factor				0.95	0.95	1.00	0.97	0.86			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
FIt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1681	1693	1583	3433	6408			7544	1583
FIt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1681	1693	1583	3433	6408			7544	1583
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	178	9	331	305	1998	0	0	1387	671
RTOR Reduction (vph)	0	0	0	0	0	54	0	0	0	0	0	317
Lane Group Flow (vph)	0	0	0	93	94	277	305	1998	0	0	1387	354
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				31.9	31.9	31.9	18.5	104.1			79.1	79.1
Effective Green, g (s)				31.9	31.9	31.9	18.5	104.1			79.1	79.1
Actuated g/C Ratio				0.21	0.21	0.21	0.12	0.69			0.53	0.53
Clearance Time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				357	360	336	423	4447			3978	834
v/s Ratio Prot							c0.09	c0.31			0.18	
v/s Ratio Perm				0.06	0.06	c0.17						0.22
v/c Ratio				0.26	0.26	0.82	0.72	0.45			0.35	0.42
Uniform Delay, d1				49.2	49.2	56.4	63.3	10.2			20.5	21.6
Progression Factor				1.00	1.00	1.00	1.00	1.00			1.01	2.40
Incremental Delay, d2				0.4	0.4	15.0	6.0	0.3			0.2	
Delay (s)				49.6	49.6	71.3	69.2	10.5			20.8	52.9
Level of Service				D	D	Е	Е	В			C	D
Approach Delay (s)		0.0			63.5			18.3			31.3	
Approach LOS		Α			Е			В			С	
Intersection Summary												
HCM 2000 Control Delay			28.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.59									
Actuated Cycle Length (s)			150.0		um of los				20.5			
Intersection Capacity Utilizat	tion		68.6%	IC	U Level	of Service)		С			
Analysis Period (min)			15									
o Critical Lana Croup												

c Critical Lane Group

	۶	→	*	•	-	1	1	†	1	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	↑ ↑		14.14	ተተ	7"	75	ተተተ	7	15	ተ ቀڼ	
Traffic Volume (veh/h)	179	489	169	623	369	84	205	1317	306	51	1759	127
Future Volume (veh/h)	179	489	169	623	369	84	205	1317	306	51	1759	127
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	181	494	171	629	373	85	207	1330	309	52	1777	128
Adj No. of Lanes	2	2	0	2	2	1	1	3	1	1	3	0
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	608	457	157	608	625	280	213	2257	703	176	1857	133
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	0.09	0.44	0.44	0.03	0.38	0.38
Sat Flow, veh/h	3442	2586	890	3442	3539	1583	1774	5085	1583	1774	4843	348
Grp Volume(v), veh/h	181	337	328	629	373	85	207	1330	309	52	1243	662
Grp Sat Flow(s), veh/h/ln	1721	1770	1706	1721	1770	1583	1774	1695	1583	1774	1695	1801
Q Serve(g_s), s	6.9	26.5	26.5	26.5	14.5	7.0	12.9	29.5	20.2	2.7	53.5	53.8
Cycle Q Clear(g_c), s	6.9	26.5	26.5	26.5	14.5	7.0	12.9	29.5	20.2	2.7	53.5	53.8
Prop In Lane	1.00		0.52	1.00		1.00	1.00		1.00	1.00		0.19
Lane Grp Cap(c), veh/h	608	313	301	608	625	280	213	2257	703	176	1300	691
V/C Ratio(X)	0.30	1.08	1.09	1.03	0.60	0.30	0.97	0.59	0.44	0.30	0.96	0.96
Avail Cap(c_a), veh/h	608	313	301	608	625	280	213	2257	703	202	1300	691
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.59	0.59	0.59	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	53.7	61.7	61.8	61.7	56.8	53.7	46.2	31.4	28.8	28.3	45.0	45.1
Incr Delay (d2), s/veh	0.3	73.4	77.3	37.4	0.9	0.4	52.7	1.1	2.0	0.9	16.5	25.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	19.3	18.9	15.7	7.2	3.1	11.7	14.0	9.2	1.3	28.0	31.6
LnGrp Delay(d),s/veh	53.9	135.2	139.1	99.1	57.8	54.1	99.0	32.6	30.8	29.3	61.5	70.7
LnGrp LOS	D	F	F	F	Е	D	F	С	С	С	Е	Е
Approach Vol, veh/h		846			1087			1846			1957	
Approach Delay, s/veh		119.3			81.4			39.7			63.8	
Approach LOS		F			F			D			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	10.9	73.1		33.0	20.0	64.0		33.0				
Change Period (Y+Rc), s	6.5	6.5		6.5	6.5	6.5		6.5				
Max Green Setting (Gmax), s	6.7	64.3		26.5	13.5	57.5		26.5				
Max Q Clear Time (g_c+l1), s	4.7	31.5		28.5	14.9	55.8		28.5				
Green Ext Time (p_c), s	0.0	14.2		0.0	0.0	1.5		0.0				
	0.0	14.2		0.0	0.0	1.0		0.0				
Intersection Summary		10.50 (10.00)	07.0									
HCM 2010 Ctrl Delay			67.6									
HCM 2010 LOS			E									

	۶	→	*	1	4	1	1	†	<i>></i>	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ î≽		14.54	ተተ	7	1	ተተተ	7	75	↑ ↑₽	
Traffic Volume (veh/h)	240	194	126	337	238	41	198	1582	274	60	1434	199
Future Volume (veh/h)	240	194	126	337	238	41	198	1582	274	60	1434	199
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	261	211	137	366	259	45	215	1720	298	65	1559	216
Adj No. of Lanes	2	2	- 0	2	2	1	1	3	1	1	3	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	410	250	155	432	445	199	243	2801	872	171	2303	318
Arrive On Green	0.12	0.12	0.12	0.13	0.13	0.13	0.07	0.55	0.55	0.03	0.51	0.51
Sat Flow, veh/h	3442	2098	1304	3442	3539	1583	1774	5085	1583	1774	4518	625
Grp Volume(v), veh/h	261	176	172	366	259	45	215	1720	298	65	1169	606
Grp Sat Flow(s), veh/h/ln	1721	1770	1633	1721	1770	1583	1774	1695	1583	1774	1695	1753
Q Serve(g_s), s	10.8	14.6	15.5	15.6	10.4	3.8	8.4	34.4	15.6	2.6	38.7	38.9
Cycle Q Clear(g_c), s	10.8	14.6	15.5	15.6	10.4	3.8	8.4	34.4	15.6	2.6	38.7	38.9
Prop In Lane	1.00		0.80	1.00		1.00	1.00		1.00	1.00		0.36
Lane Grp Cap(c), veh/h	410	211	194	432	445	199	243	2801	872	171	1728	893
V/C Ratio(X)	0.64	0.84	0.88	0.85	0.58	0.23	0.88	0.61	0.34	0.38	0.68	0.68
Avail Cap(c_a), veh/h	424	218	201	493	507	227	357	2801	872	221	1728	893
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.66	0.66	0.66	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	63.0	64.7	65.0	64.2	61.9	59.0	28.6	22.9	18.6	20.3	27.5	27.6
Incr Delay (d2), s/veh	3.0	23.4	32.9	8.0	0.9	0.4	16.2	1.0	1.1	1.4	2.1	4.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.3	8.5	8.8	7.9	5.1	1.7	5.8	16.3	7.0	1.3	18.5	19.7
LnGrp Delay(d),s/veh	66.0	88.0	97.9	72.2	62.7	59.4	44.8	23.9	19.7	21.7	29.7	31.7
LnGrp LOS	E	F	F	E	E	E	D	С	В	С	С	С
Approach Vol, veh/h		609			670			2233			1840	
Approach Delay, s/veh		81.4			67.7			25.3			30.0	
Approach LOS		F			E			C			C	
	1		2	1		G	7					
Timer		2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.2	89.1		24.4	17.3	83.0		25.3				
Change Period (Y+Rc), s	6.5	6.5		6.5	6.5	6.5		6.5				
Max Green Setting (Gmax), s	8.9	75.1		18.5	20.5	63.5		21.5				
Max Q Clear Time (g_c+l1), s	4.6	36.4		17.5	10.4	40.9		17.6				
Green Ext Time (p_c), s	0.0	21.0		0.3	0.4	14.0		1.2				
Intersection Summary			06.5									
HCM 2010 Ctrl Delay			38.6									
HCM 2010 LOS			D									

	۶	-	*	1	-	1	4	†	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14	44		7		7"	Ŋ	ተ ቀው		7	ተተ _ጉ	
Traffic Volume (vph)	8	0	12	150	0	26	29	1436	146	50	1837	35
Future Volume (vph)	8	0	12	150	0	26	29	1436	146	50	1837	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Lane Util. Factor		1.00		1.00		1.00	1.00	0.91		1.00	0.91	
Frt		0.92		1.00		0.85	1.00	0.99		1.00	1.00	
Flt Protected		0.98		0.95		1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1675		1770		1583	1770	5015		1770	5071	
Flt Permitted		0.98		0.74		1.00	0.09	1.00		0.13	1.00	
Satd. Flow (perm)		1675		1385		1583	161	5015		235	5071	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	8	0	12	156	0	27	30	1496	152	52	1914	36
RTOR Reduction (vph)	0	18	0	0	0	23	0	6	0	0	1	0
Lane Group Flow (vph)	0	3	0	156	0	4	30	1642	0	52	1949	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		22.2		22.2		22.2	116.3	116.3		116.3	116.3	
Effective Green, g (s)		22.2		22.2		22.2	116.3	116.3		116.3	116.3	
Actuated g/C Ratio		0.15		0.15		0.15	0.78	0.78		0.78	0.78	
Clearance Time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Vehicle Extension (s)		3.0		3.0		3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		247		204		234	124	3888		182	3931	
v/s Ratio Prot								0.33			c0.38	
v/s Ratio Perm		0.00		c0.11		0.00	0.19			0.22		
v/c Ratio		0.01		0.76		0.02	0.24	0.42		0.29	0.50	
Uniform Delay, d1		54.5		61.4		54.6	4.7	5.6		4.9	6.1	
Progression Factor		1.00		1.00		1.00	1.00	1.00		0.61	0.62	
Incremental Delay, d2		0.0		15.6		0.0	4.6	0.3		2.2	0.2	
Delay (s)		54.6		77.0		54.6	9.2	6.0		5.1	4.0	
Level of Service		D		E		D	Α	Α		Α	Α	
Approach Delay (s)		54.6			73.7			6.0			4.1	
Approach LOS		D			Е			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.5	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.54									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			11.5			
Intersection Capacity Utilizat	ion		65.3%	IC	CU Level	of Service)		С			
Analysis Period (min)			15									

	۶	→	*	1	4	4	1	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7	ħ	ተ ቀڼ		7	ተተኈ	
Traffic Volume (vph)	6	0	8	207	0	23	44	1663	190	26	1533	9
Future Volume (vph)	6	0	8	207	0	23	44	1663	190	26	1533	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Lane Util. Factor		1.00		1.00		1.00	1.00	0.91		1.00	0.91	
Frt		0.92		1.00		0.85	1.00	0.98		1.00	1.00	
Flt Protected		0.98		0.95		1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684		1770		1583	1770	5007		1770	5081	
FIt Permitted		0.98		0.75		1.00	0.11	1.00		0.07	1.00	
Satd. Flow (perm)		1684		1392		1583	205	5007		129	5081	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	0	9	230	0	26	49	1848	211	29	1703	10
RTOR Reduction (vph)	0	13	0	0	0	20	0	7	0	0	0	0
Lane Group Flow (vph)	0	3	0	230	0	6	49	2052	0	29	1713	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		30.2		30.2		30.2	108.3	108.3		108.3	108.3	
Effective Green, g (s)		30.2		30.2		30.2	108.3	108.3		108.3	108.3	
Actuated g/C Ratio		0.20		0.20		0.20	0.72	0.72		0.72	0.72	
Clearance Time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Vehicle Extension (s)		3.0		3.0		3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		339		280		318	148	3615		93	3668	
v/s Ratio Prot								c0.41			0.34	
v/s Ratio Perm		0.00		c0.17		0.00	0.24			0.22		
v/c Ratio		0.01		0.82		0.02	0.33	0.57		0.31	0.47	
Uniform Delay, d1		47.9		57.3		48.0	7.6	9.8		7.5	8.7	
Progression Factor		1.00		1.00		1.00	1.00	1.00		0.60	0.63	
Incremental Delay, d2		0.0		17.3		0.0	5.9	0.7		7.7	0.4	
Delay (s)		47.9		74.6		48.0	13.5	10.5		12.2	5.9	
Level of Service		D		E		D	В	В		В	Α	
Approach Delay (s)		47.9			71.9			10.5			6.0	
Approach LOS		D			E			В			Α	
Intersection Summary												3763
HCM 2000 Control Delay			12.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			11.5			
Intersection Capacity Utilizat	tion		63.4%	IC	CU Level	of Service)		В			
Analysis Period (min)			15									
0.11												

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Number Initial Q (Qb), veh Ped-Bike Adj(A_pbT)	162 162 7 0 1.00 1.00 1900 172	185 185 4 0	166 166 14 0 1.00	WBL 570 570 3 0	WBT 177 177 177 8	WBR 2 2	NBL 166	NBT ↑↑ 858	NBR	SBL	SBT ↑↑ ↑	SBR
Traffic Volume (veh/h) Future Volume (veh/h) Number Initial Q (Qb), veh	162 7 0 1.00 1.00 1900	185 185 4 0	166 14 0	570 570 3	177 177		166					
Future Volume (veh/h) Number Initial Q (Qb), veh	162 7 0 1.00 1.00 1900	185 4 0	166 14 0	570 3	177			858	170			
Number Initial Q (Qb), veh	7 0 1.00 1.00 1900	1.00	14 0	3		2		000	470	28	1168	192
Initial Q (Qb), veh	0 1.00 1.00 1900	1.00	0		8		166	858	470	28	1168	192
	1.00 1.00 1900	1.00		0		18	5	2	12	1	6	16
Ped-Bike Adj(A pbT)	1.00 1900		1.00		0	0	0	0	0	0	0	0
	1900			1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	172	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h		197	177	606	188	2	177	913	500	30	1243	204
Adj No. of Lanes	0	2	0	2	1	0	1	2	1	1	3	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	182	215	203	671	359	4	232	1550	693	182	1712	281
Arrive On Green	0.17	0.17	0.17	0.19	0.19	0.19	0.07	0.44	0.44	0.02	0.39	0.39
Sat Flow, veh/h	1053	1242	1171	3442	1840	20	1774	3539	1583	1774	4403	723
Grp Volume(v), veh/h	296	0	250	606	0	190	177	913	500	30	957	490
Grp Sat Flow(s), veh/h/ln	1810	0	1656	1721	0	1859	1774	1770	1583	1774	1695	1735
Q Serve(g_s), s	24.2	0.0	22.1	25.8	0.0	13.7	8.7	29.3	38.9	1.5	36.1	36.1
Cycle Q Clear(g_c), s	24.2	0.0	22.1	25.8	0.0	13.7	8.7	29.3	38.9	1.5	36.1	36.1
Prop In Lane	0.58		0.71	1.00		0.01	1.00		1.00	1.00		0.42
Lane Grp Cap(c), veh/h	314	0	287	671	0	362	232	1550	693	182	1318	675
V/C Ratio(X)	0.94	0.00	0.87	0.90	0.00	0.52	0.76	0.59	0.72	0.16	0.73	0.73
Avail Cap(c_a), veh/h	314	0	287	732	0	395	293	1550	693	200	1318	675
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	61.3	0.0	60.4	59.0	0.0	54.1	31.7	31.9	34.6	28.1	39.0	39.0
Incr Delay (d2), s/veh	35.9	0.0	24.0	13.9	0.0	1.2	8.8	1.6	6.4	0.4	3.5	6.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	15.3	0.0	12.0	13.6	0.0	7.2	4.8	14.7	18.2	0.8	17.5	18.5
LnGrp Delay(d),s/veh	97.2	0.0	84.4	72.9	0.0	55.3	40.5	33.6	41.0	28.5	42.5	45.7
LnGrp LOS	F	0.0	F	F E	0.0	E	D	C	D	C	D	D
Approach Vol, veh/h		546			796			1590			1477	
Approach Delay, s/veh		91.3			68.7			36.7			43.3	
Approach LOS		51.5 F			60.7 E			D			D	
			•			0	7				D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.1	72.2		32.0	16.4	64.8		36.7				
Change Period (Y+Rc), s	5.5	6.5		6.0	5.5	6.5		7.5				
Max Green Setting (Gmax), s	5.1	61.5		26.0	16.1	50.5		31.9				
Max Q Clear Time (g_c+l1), s		40.9		26.2	10.7	38.1		27.8				
Green Ext Time (p_c), s	0.0	8.8		0.0	0.2	7.6		1.4				
Intersection Summary												
HCM 2010 Ctrl Delay			51.4									
HCM 2010 LOS			D									

	۶	→	*	*	4	*	1	†	<i>></i>	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ብጉ		14/4	₽		1	ተተ	7	75	ተ ቀڼ	
Traffic Volume (veh/h)	91	75	34	488	83	12	93	826	406	31	895	84
Future Volume (veh/h)	91	75	34	488	83	12	93	826	406	31	895	84
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	100	82	37	536	91	13	102	908	446	34	984	92
Adj No. of Lanes	0	2	0	2	1	0	1	2	1	1	3	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	126	111	51	617	286	41	330	1925	861	248	2506	234
Arrive On Green	0.08	0.08	0.08	0.18	0.18	0.18	0.04	0.54	0.54	0.03	0.53	0.53
Sat Flow, veh/h	1551	1362	624	3442	1595	228	1774	3539	1583	1774	4733	442
Grp Volume(v), veh/h	115	0	104	536	0	104	102	908	446	34	704	372
Grp Sat Flow(s), veh/h/ln	1785	0	1753	1721	0	1823	1774	1770	1583	1774	1695	1785
Q Serve(g_s), s	9.5	0.0	8.7	22.7	0.0	7.4	3.9	23.6	26.8	1.3	18.5	18.6
Cycle Q Clear(g_c), s	9.5	0.0	8.7	22.7	0.0	7.4	3.9	23.6	26.8	1.3	18.5	18.6
Prop In Lane	0.87		0.36	1.00		0.13	1.00		1.00	1.00		0.25
Lane Grp Cap(c), veh/h	145	0	143	617	0	327	330	1925	861	248	1795	945
V/C Ratio(X)	0.79	0.00	0.73	0.87	0.00	0.32	0.31	0.47	0.52	0.14	0.39	0.39
Avail Cap(c_a), veh/h	238	0	234	860	0	456	396	1925	861	268	1795	945
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	67.6	0.0	67.3	59.8	0.0	53.6	16.2	21.0	21.7	16.8	21.0	21.0
Incr Delay (d2), s/veh	9.3	0.0	6.9	7.0	0.0	0.6	0.5	0.8	2.2	0.2	0.6	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.1	0.0	4.5	11.4	0.0	3.8	1.9	11.7	12.2	0.6	8.8	9.4
LnGrp Delay(d),s/veh	76.9	0.0	74.2	66.8	0.0	54.1	16.7	21.8	23.9	17.1	21.6	22.2
LnGrp LOS	Е		E	Е		D	В	С	С	В	С	С
Approach Vol, veh/h		219			640			1456			1110	
Approach Delay, s/veh		75.6			64.8			22.1			21.7	
Approach LOS		7 G.G			E			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6	DATE OF	8				
Phs Duration (G+Y+Rc), s	9.3	88.1		18.2	11.5	85.9		34.4				
Change Period (Y+Rc), s	5.5	6.5		6.0	5.5	6.5		7.5				
Max Green Setting (Gmax), s	5.5	61.5		20.0	11.5	55.5		37.5				
Max Q Clear Time (g_c+l1), s	3.3	28.8		11.5	5.9	20.6		24.7				
Green Ext Time (p_c), s	0.0	10.1		0.7	0.1	8.9		2.2				
Intersection Summary	0.0	1011			0							
HCM 2010 Ctrl Delay			33.4		-				The state of the s			
HCM 2010 LOS			C									
110141 2010 200			U									

	۶	-	7	1	—	1	1	†	1	1	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	↑ ↑		7	↑ ↑			4			4	
Traffic Volume (veh/h)	13	712	30	2	762	7	59	4	14	11	2	67
Future Volume (veh/h)	13	712	30	2	762	7	59	4	14	11	2	67
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	15	800	34	2	856	8	66	4	16	12	2	75
Adj No. of Lanes	1	2	0	1	2	0	0	1	0	0	1	0
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	143	1070	45	137	1061	10	623	42	139	125	44	707
Arrive On Green	0.02	0.31	0.31	0.00	0.30	0.30	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	1774	3459	147	1774	3593	34	1060	79	260	165	82	1325
Grp Volume(v), veh/h	15	409	425	2	422	442	86	0	0	89	0	0
Grp Sat Flow(s), veh/h/ln	1774	1770	1837	1774	1770	1857	1400	0	0	1572	0	0
Q Serve(g_s), s	0.6	22.9	22.9	. 0.1	24.2	24.2	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.6	22.9	22.9	0.1	24.2	24.2	2.6	0.0	0.0	3.0	0.0	0.0
Prop In Lane	1.00		0.08	1.00		0.02	0.77		0.19	0.13		0.84
Lane Grp Cap(c), veh/h	143	547	568	137	522	548	805	0	0	876	0	0
V/C Ratio(X)	0.11	0.75	0.75	0.01	0.81	0.81	0.11	0.00	0.00	0.10	0.00	0.00
Avail Cap(c_a), veh/h	226	901	935	245	901	945	805	0	0	876	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.48	0.48	0.48	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	29.0	34.1	34.1	29.2	35.9	35.9	12.6	0.0	0.0	12.7	0.0	0.0
Incr Delay (d2), s/veh	0.2	1.0	1.0	0.0	3.0	2.9	0.3	0.0	0.0	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	11.3	11.7	0.0	12.3	12.8	1.3	0.0	0.0	1.4	0.0	0.0
LnGrp Delay(d),s/veh	29.1	35.1	35.1	29.3	38.9	38.7	12.8	0.0	0.0	12.9	0.0	0.0
LnGrp LOS	С	D	D	С	D	D	В			В		
Approach Vol, veh/h		849			866			86			89	
Approach Delay, s/veh		35.0			38.8			12.8			12.9	
Approach LOS		D			D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		64.7	5.3	40.0		64.7	6.8	38.5				
Change Period (Y+Rc), s		6.0	5.0	6.0		6.0	5.0	6.0				
Max Green Setting (Gmax), s		30.0	7.0	56.0		30.0	7.0	56.0				
Max Q Clear Time (g_c+l1), s		4.6	2.1	24.9		5.0	2.6	26.2				
Green Ext Time (p_c), s		0.4	0.0	6.0		0.5	0.0	6.2				
Intersection Summary												
HCM 2010 Ctrl Delay			34.7									
HCM 2010 LOS			C									

	≯	-	•	1	4-	1	1	†	<i>></i>	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ î≽		7	∱ î≽			4			4	
Traffic Volume (veh/h)	29	525	32	3	504	8	10	0	25	1	2	16
Future Volume (veh/h)	29	525	32	3	504	8	10	0	25	1	2	16
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	34	618	38	4	593	9	12	0	29	1	2	19
Adj No. of Lanes	1	2	0	1	2	0	0	1	0	0	1	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	162	800	49	126	757	11	291	21	653	56	110	837
Arrive On Green	0.03	0.24	0.24	0.01	0.21	0.21	0.60	0.00	0.60	0.60	0.60	0.60
Sat Flow, veh/h	1774	3388	208	1774	3569	54	412	35	1082	36	182	1386
Grp Volume(v), veh/h	34	323	333	4	294	308	41	0	0	22	0	0
Grp Sat Flow(s), veh/h/ln	1774	1770	1826	1774	1770	1853	1530	0	0	1605	0	0
Q Serve(g_s), s	1.6	18.7	18.8	0.2	17.3	17.3	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	1.6	18.7	18.8	0.2	17.3	17.3	1.1	0.0	0.0	0.6	0.0	0.0
Prop In Lane	1.00		0.11	1.00		0.03	0.29		0.71	0.05		0.86
Lane Grp Cap(c), veh/h	162	418	431	126	375	393	966	0	0	1004	0	0
V/C Ratio(X)	0.21	0.77	0.77	0.03	0.78	0.78	0.04	0.00	0.00	0.02	0.00	0.00
Avail Cap(c_a), veh/h	288	869	896	294	869	910	966	0	0	1004	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.82	0.82	0.82	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	33.7	39.2	39.3	35.0	40.9	40.9	8.8	0.0	0.0	8.7	0.0	0.0
Incr Delay (d2), s/veh	0.5	2.5	2.5	0.1	3.6	3.5	0.1	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.8	9.4	9.7	0.1	8.8	9.2	0.5	0.0	0.0	0.3	0.0	0.0
LnGrp Delay(d),s/veh	34.2	41.7	41.7	35.1	44.6	44.4	8.9	0.0	0.0	8.8	0.0	0.0
LnGrp LOS	С	D	D	D	D	D	Α			Α		
Approach Vol, veh/h		690			606			41			22	
Approach Delay, s/veh		41.4			44.4			8.9			8.8	
Approach LOS		D			D			A			A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		72.4	5.6	32.0		72.4	8.2	29.3				
Change Period (Y+Rc), s		6.0	5.0	6.0		6.0	5.0	6.0				
Max Green Setting (Gmax), s		28.0	11.0	54.0		28.0	11.0	54.0				
Max Q Clear Time (g_c+l1), s		3.1	2.2	20.8		2.6	3.6	19.3				
			0.0	4.5		0.1	0.0	4.1				
Green Ext Time (p_c), s		0.2	0.0	4.0		υ. ι	0.0	4.1				
Intersection Summary			44.0									
HCM 2010 Ctrl Delay			41.2									
HCM 2010 LOS			D									

		TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE	VEMENT SUMAND OF SERVICE	JMMARY SE	Count Date: . Conditions/ Design Year: Computed By	Date: Nons/ Eyear: -	NA Background MN	Traffic Volumes Date:		Location: MD NB 270 Ro	MD 187 @ Ramp		
Morning Ped	H /949 + /3/0 /49 + 866 + +	729 73	 		LANE C MD 187	ONFIGU TITTE Adjust	LANE CONFIGURATION NB 1 270 Ramp Ramp Thiffff Turn Adjustments	 	Evening Peak	1290 + 1837 F 284	308		
Phasing @			X + 2 × 4 v	Opposin Right 20 20 80 80	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999 1000+	lume lume	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	No. of Lanes 1 = 1 2 = 1 5 + 3 = 1	Lane Use Factor 1.00 .53 .37 .25	Service Level B A A B B B B B B B B B B B B B B B B B	11 11 11 11 11 11	Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	
Ø Movement	Volume(1)	Lane Use Factor(2)	Lane Volume (1)x(2)	Opposing Lefts	Critical Lane Volume	*	Ø Movement	Volume(1) F	Lane Use Factor(2)	Lane Volume (1)x(2)	Opposing Lefts	Critical Lane Volume	*
aN NB	1310	0.3) 9	393		a Z	858/	0.3	587	1	5-5.7	7
SB	1949	0.25	_	9.464/	576	7	SB	1298	0.25	(0L/ 9.7.637	495	
MB MB	150+13	0.53	98	,	98	7	MB MB	\$+168	0.53	76		76	7
Remarks:		*	* critical volume	-	3		Remarks.		*	* rrition	- V HOH	000	(
		5	LEVEL	L OF SERVICE	66 V) }	יה ביבי ביבי		5	LEVEL	L OF SERVICE	N) / /

1 1 1			*	7	7	1	N/C
		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	645	2000	202	74
J 187 @	200 FE 274		Opposing Lefts	09	86/		TOTAL //
Location: MD Tuckerman L	H 60 + 1582 198 + 198	Service Level B A A T E E E E E E E E E E E E E E E E E E E	Lane Volume (1)x(2)	585	1709	202	al volume LEVEL
	Evening Peak 1948	Lane Use Factor 1.00 3.37 3.37	Lane Use Factor(2)	0.37	0.53	9520	* critical
olumes (e:	 	No. of Lanes 1 = 2 = 2 = 5 = 5 = 5 = 5 = 5 = 5	Volume(1)	7851	1934 + 199	337	
NA Background Traffic Volumes MN Date:	Indicate North by Arrow Tuckerman La	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	aN 10	SB	WB	Remarks:
	ONFIGURATIO Tuc Tuc Adjustments		Ø				
Date: ions/ Year ited E	ENOON THE PART OF	gh an olum€	*	\vdash	7)	7	0/\
Count Date: Conditions/ Design Year: Computed By	LANE CONFIGURATION Man La Tucke Tucke Man La Left Turn Adjustments	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999	Critical Lane Volume	53%	249	379	1626 WICE
UMMARY	Tuckerman Left	Opposition (1907)	Opposing Lefts	15	502	,	TOTAL //
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE	· · · · · · · · · · · · · · · · · · ·	X - 4 10 4 10	1 × (E)	787	849	374	critical volume
INING MOY	926	M Con 100	Lane Use Factor(2)	0.37	0.53	9.53.6	* critic
	306 1317 1759 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	as Tocksansa	Volume(1)	/317	1759+127	623	
5	Morning Ped	Phasing & Sp/H	Ø Movement	M Z	SB RB	MB MB	Remarks:
	·						

		*	7	1)			\/C
cal Lane . Tot. or Less to 1150	to 1300 to 1450 to 1600 r than 1600	Critical Lane Volume	712	515	m	2/3		27
	11 11 11 11	Opposing Lefts	92	44	107	9		TOTAL OF SER
76 1533 + 1663 9 9 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Lane Volume (1)x(2)	989	112	14	207		critical volume
\ _ . (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.37 .30 .25	Lane Use Factor(2)	0.37	0.37	1.0	1.0		* critic
S S S		Volume(1)	1634190	133.+9	8+9	207		
ndicate North by Ar	0.7 % % % % % % % % % % % % % % % % % % %	ovement	NB	88 8	EG	WB		
SURATION SURATION SURATION SURATION STATE		Ø						Remarks:
ONFIG Adjus		*		7	7		1	2/2
Xter La Turn Volum	0 to 599 0 to 799 0 to 999 00+	Critical Lane Volume	635	725	170	158	768	`¶
Poinde Copposin Right	20 60 80 10	Opposing Lefts	50	53	150	œ		TOTAL OF SER
	0 ω 4 ω	Lane Volume (1)x(2)	585	633	20	150		critical volume
75 25 1		Lane Use Factor(2)	0.37	0.37	1.0	1.0		* critico
1 144		Volume(1)	1436 + 146	1837 +35	2148	150		
Morning Ped		Movement	NB	BS 1	EB	MM .		Remarks:
	ing Peak Hour LANE CONFIGURATION Response Land Configuration Majustments Left Turn Adjustments Left Turn Adjustments Response Land Configuration Care Configuration Care Configuration Care Care Care Care Care Care Care Care	Poindexter Lo Title Majustments Rey Right-Turn Adjustments Rey Right-Turn Adjustments Coto to 589 Coto to	Poindexter Lo Opposing Through and Passenger Cor Regulation to to 1989 Key Rept-Turn Volume(1) Factor(2) (1)X(2) Lane Use Volume (1) Factor(2) (1)X(2) Lefts Volume(1) Factor(2	Morning Peak Hour	Morning Peak Hour Control Contr	Morning Peak Hour Morning Peak Hour	Morning Peak Hour	Morning Peak Hour

TURNING MO	LEVEL

VEMENT SUMMARY OF SERVICE AND

Conditions/ Background Traffic Volumes Design Year: Computed By: MN Count Date: NA

_ Date:

Tilden La-Nicholson La Location: MD 187 @

	<u> </u>	0	*	7		7	7		>
		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	694	455	901	293		868 VICE
	7 28 20 100		Opposing Lefts	31	93	1	J		TOTAL 86
k Hour	31 895 84	Service Level B A A D C C C C C C C C C C C C C C C C C C C	Lane Volume (1)x(2)	826	798	301	233		critical volume
ing Peak		Lane Use Factor 1.00 .53 .37 .36	Lane Use Factor(2)	D-57.B	0.37	0.53	9.0		* critical
Evening		No. of Lanes 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1	Volume(1) Fo	928	V8 + 298	45+56+16	884		
Indicate North by Arrow	e či i i i i i i i i i i i i i i i i i i	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	NB	SB	EB	WB		Remarks:
	GURAT Street		Ø						
	SONFI THE MAIN	gh an olume	*)	2	7		0//
	Left Turn Adjustments	Opposing Through and Right—Turn Volume o to 199 200 to 599 600 to 799 800 to 999 1000+	Critical Lane Volume	483	699	272	342		/283 VICE
	Tilden Lef	Opposin Right 0 20 20 80 80	Opposing Lefts	82	99/	1	١		TOTAL /2
	<u>†</u>	X + 0 0 4 0	- Zer (E)	455	1	272	342		al volume LEVEL
	720	71/42	Lane Use Factor(2)	6.3753	0.37	, 0.53	9.0		* critical
Peak Hour	28 4 858 1/68 + 1/66	Michelson	Volume(1)	828	168+191	9×+581+291	570		
Morning Peak	792	Phasing S Splrt d	Ø Movement	aN	SB	EB	WB		Remarks:

			*	/		7	-	\/c
©		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	37	298	300		37
Tuckerman La Dr			Opposing Lefts		3	29		TOTAL 3.
Location: Tu	D	Service Level Level DOCBA	Lane Volume (1)x(2)	36	295	122		* critical volume LEVEL
	Evening Peak	Lane Use Factor 1.00 1.33 1.37 1.25	Lane Use Factor(2)	1.0	0.53	0.53		* critico
olumes s:	 	No. of Lanes 2 2 = 1 = 5 = 1 = 5	Volume(1)	11*25	72+523	8495		
NA Background Traffic Volumes MN Date:	Indicate North by Arrow Tuckerman La Tucke	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	NB	SB	WB		arks:
	LANE CONFIGURATION Sining In La Tucker Tucker Tucker Tucker Tucker Tucker Tucker Tucker Tucker Tucker Tucker Tucker		8					Remarks:
Date ions/ i Year uted E	CONFI	ah an √olume	* - υ		7	7		>
Count Date: _ Conditions/ Design Year: Computed By	LANE Cloxinia Dr Cloxinia Dr Cleft Turn	Opposing Through and Right—Turn Volume a to 199 200 to 599 600 to 799 800 to 999 1000+	g Critical Lane Volume	46	295	421		- 561 RVICE
UMMARY CE	Tuckerman Gloxinia Dr	Opposi Righ 0 2 2 8	Opposing Lefts	11	29	IJ		TOTAI OF SE
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE		X - 0 w 4 w	135E	83	393	807		* critical volume LEVEL
RNING MOY			Lane Use Factor(2)	1.0	0.53	0.53		* critic
	11 J J J J J J J J J J J J J J J J J J		Volume(1)	41+4	72+2+67	762+7		-
	Morning Peak Hour	Phasing @	Ø Movement	a Z	SB	WB		Remarks:

APPENDIX F TILDEN MIDDLE SCHOOL COUNTS

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

ET

Old Georgetown Rd

Tilden Middle School Exit

Intersection of:

Counted by:

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD

Location : Date : Weather :

Entered by:

Montgomery County 01/09/2019 Day:

Fair

SKN

Wednesday

STREET TRAFFIC STUDIES

LTD

TRAFFIC FROM WEST TRAFFIC FROM EAST TOTAL TRAFFIC FROM NORTH TRAFFIC FROM SOUTH Tilden Middle School N + SOld Georgetown Rd Old Georgetown Rd on: on: on: TIME THRU RIGHT TOTAL E + W THRU RIGHT TOTAL RIGHT THRU LEFT TOTAL LEFT RIGHT THRU LEFT TOTAL LEFT AM n 06:30-45 45-00 07:00-15 15-30 30-45 n 45-00 08:00-15 n 15-30 30-45 45-00 09:00-15 15-30 AM 3 HOUR TOTAL S 1 HOUR **TOTALS** 630-730 645-745 07-08 715-815 730-830 Ò 745-845 n 08-09 815-915 830-930 PEAK HOUR 745-845 PM 02:00-15 15-30 30-45 45-00 03:00-15 15-30 30-45 45-00 04:00-15 15-30 30-45 45-00 PM 3 HOUR **TOTALS** 1 HOUR **TOTALS** 02-03 215-315 230-330 n 245-345 03-04 315-415 330-430 345-445 04-05 PEAK HOUR 04-05

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

Intersection of:

Counted by:

and:

Old Georgetown Rd
Tilden Middle School Exit
ET bikes only

STSLTD STSLTD STSLTD STSLTD STSLTD Location : Montgomery C

Weather:

Entered by:

Date

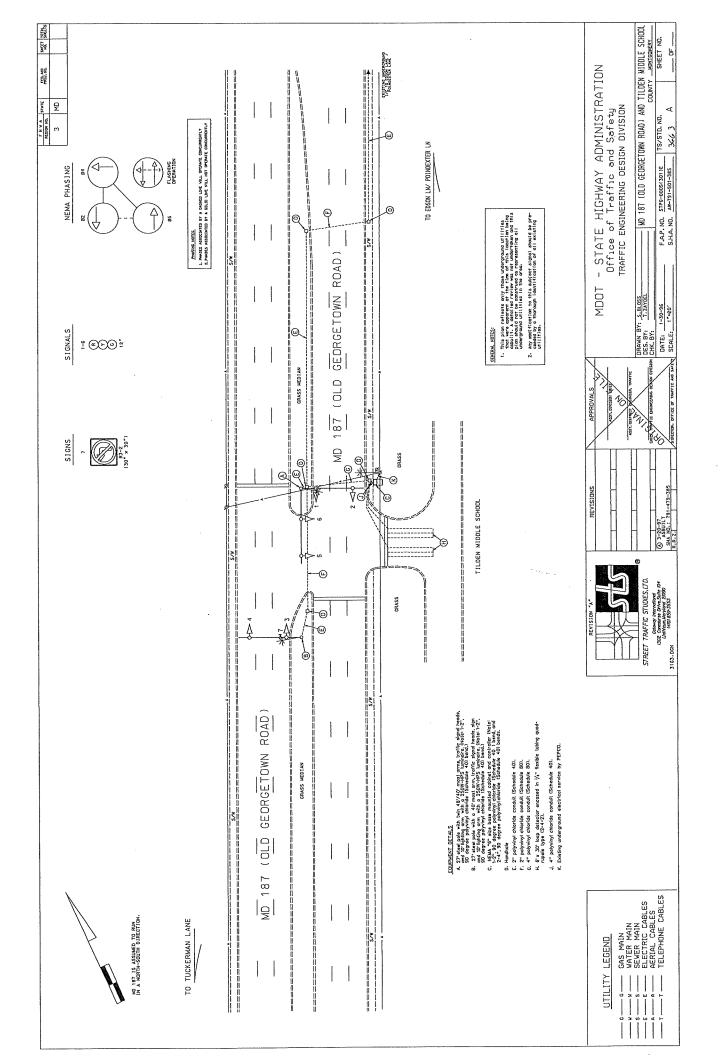
STSLTD STSLTD STSLTD STSLTD

Montgomery County 01/09/2019 Day:

SKN

Wednesday

STREET TRAFFIC STUDIES LTD


TOTAL TRAFFIC FROM EAST TRAFFIC FROM WEST TRAFFIC FROM NORTH TRAFFIC FROM SOUTH Tilden Middle School N + Son: on: Old Georgetown Rd on: Old Georgetown Rd on: TIME LEFT THRU RIGHT TOTAL E + W RIGHT THRU LEFT TOTAL TOTAL LEFT THRU RIGHT TOTAL RIGHT THRU LEFT AM 06:30-45 45-00 07:00-15 15-30 30-45 45-00 08:00-15 15-30 0. 30-45 45-00 09:00-15 .0 15-30 AM3 HOUR **TOTALS** 1 HOUR TOTALS 630-730 645-745 07-08 O 715-815 730-830 745-845 08-09 815-915 830-930 PEAK HOUR 645-745 PM02:00-15 15-30 30-45 O 45-00 03:00-15 15-30 30-45 45-00 04:00-15 15-30 30-45 45-00 PM 3 HOUR **TOTALS** 1 HOUR **TOTALS** n n 02-03 215-315 230-330 245-345 03-04 315-415 330-430 n 345-445 04-05 **PEAK HOUR** 2 i 315-415

STSLTD ST

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD

0 |

245-345

694 OLD GEORGETOWN ROAD (MD 187) & TILDEN MIDDLE SCHOOL DRIVEWAY

SR - MD 187

WR - TII DEN MS DRWY
NB - MI

The state of the s		SB - MD 187		WB - TILDEN MS DRWY	į	NB - MD 187		
PHASE	1	2	ю	4	Ŋ	9	7	8
MIN GRN	1	5	0	3	0	រេ	0	0
BK MGRN	0	0	0	0	0	0	·	0
CS MGRN	0	0	0	0	0	0	0	0
DLY GRN	0	0	0	0	0	0	0	0
WALK	0	0	0	0	0	0	0	0
WALK2	0	0	0	0	0	0	0	0
WLK MAX	0	0	0	0	0	0	0	0
PED CLR	0	0	0	0	0	0	0	0
PD CLR2	0	0	0	0	0	0	0	0
PC MAX	0	0	0	0	0	0	0	0
PED CO	0	0	0	0	0	0	0	0
VEH EXT	0	0	0	3	0	0	0	0
VH EXT2	0	0	0	0	0	0	0	0
MAX1	0	80	0	20	0	80	0	0
MAX2	0	09	0	40	0	09	0	0
MAX3	0	0	0	0	0	0	0	0
DYM MAX	0	0	0	0	0	0	0	0
DYM STP	0	0	0	0	0	0	0	0
YELLOW	3	4	3	4	3	4	3	3
RED CLR	1	1.5	1	2	1	1.5	1	1
RED MAX	0	0	0	0	0	0	0	0
RED RVT	2	5	2	2	2	5	2	2
ACT B4	0	0	0	0	0	0	0	0
SEC/ACT	0	0	0	0	0	0	0	0
MAX INT	0	0	0	0	0	0	0	0
TIME B4	0	0	0	0	0	0	0	0
CARS WT	0	0	0	0	0	0	0	0
STPTDUC	0	0	0	0	0	0	0	0
TTREDUC	0	0	0	0	0	0	0	0
MIN GAP	0	0	0	0	0	0	0	0

	AM	Mid	PM	PHASE	1	2	m	4	52	9	7	00
USE SPLIT PATTERN	1	2		SPLIT 1	0	58	0	42	0	28	0	0
CYCLE	100	120		COORD		×				×		
OFFSET VAL	55	0		PHASE MODE	NONE .	NONE	NONE	NONE	NONE	NONE	NONE	NONE
				PHASE	1	2	n	4	5	9	7	∞
Signal is in morning operation from 7:50AM to 8:15AM	from 7:50AM	1 to 8:15AM WE	sekdays	SPLIT 2	0	65	0	55	0	65	0	0
Signal is in afternoon operation from 2:55PM to 3:25PM	n from 2:55PI	M to 3:25PM w	veekdays	COORD		×				×		
Signal is in flash operation at all other times	Il other times			PHASE MODE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
				PHASE	1	2	m	4	S	9	7	∞
				SPLIT 3	0	0	0	0	0	0	0	0

HASE	1	7	8	4	5	9	7	∞
SPLIT 3	0	0	0	0	0	0	0	0
COORD		×				×		
PHASE MODE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE

STSLTD STSLTD STSLTD STSLTD STSLTD

Counted by:

STSLTD STSLTD STSLTD STSLTD STSLTD

STSLTD STSLTD STSLTD STSLTD

VEHICLE TURNING MOVEMENT COUNT - SUMMARY
Intersection of: Old Georgetown Rd Old Georgetown Rd Tilden Middle School Entrance and: RJ

Location: Date : Weather: Entered by: Montgomery County 01/09/2019 Day: Fair

SKN

Wednesday

STREET TRAFFIC STUDIES LTD

-	on:		rgetown		on:	Old Ge	SOUTH orgetown		on:	C FROM			on:		liddle Sch	nool	TOTAI N+S +
TIME	RIGHT	THRU	LEFT	TOTAL	LEFT	THRU	RIGHT	TOTAL	RIGHT			TOTAL				TOTAL	
																	İ
06:30-45	0	270	0	270	0	111	0	111	0	0	0	0	1	0	0	1	38
45-00	0	295	11	306	0	133	4	137	0	0	0	0	3	0	1	4	44
07:00-15	0	395	20	415	0	150	20	170	0	0	0	0	0	0	0	0	58
15-30	0	470	34	504	0	225	32	257	0	0	0	0	0	0	0	0	76
30-45	0	386	39	425	0	328	25	353	0	0	0	0	0	0	0	0	77
45-00	0	389	137	526	0	311	97	408	0	0	0	0	0	0	0	0	93
08:00-15 I	0	415	84	499	0	338	46	384	0	0	0	0	0	0	1	1	88
15-30	0	384	64	448	0	344	57	401	0	0	0	0	0	0	1	1	8
30-45	0	359	60	419	0	361	45	406	0	0	0	0	0	0	0	0	8:
45-00	0	437	21	458	0	421	25	446	0	0	0	0	0	0	1	1	J 90
09:00-15	0	361	32	393	0	372	17	389	0	0	0	0	0	0	1	1	j 78
15-30	0	314	13	327	0	345	10	355	0	0	0	0	0	0	0	0	68
AM	U	314	10	021	U	040	10	000									i
3 HOUR																	i
TOTALS I	0	4475	515	4990	0	3439	378	3817	0	0	0	0	4	0	5	9	I 88
	U	4413	313	4990	U	0400	070	0017	U	U		•				-	
1 HOUR																	i
TOTALS	0	4400	65	1495	0	619	56	675	0	0	0	0	4	0	1	5	21
630-730	0	1430		1650	0	836	81	917	0	0	0	0	3	0	1	4	25
645-745	0	1546	104		0	1014	174	1188	0	0	0	0	0	0	0	0	30
07-08	0	1640	230	1870	0	1202	200	1402	0	0	0	0	0	0	1	1	33
715-815	0	1660	294	1954	0	1321		1546	0	0	0	0	0	0	2	2	34
730-830	0	1574	324	1898	0		225 245	1599	0	0	0	0	0	0	2	2	34
745-845	0	1547	345	1892		1354		1637	0	0	0	0	0	0	3	3	34
08-09	0	1595	229	1824	0	1464	173		0	0	0	0	0	0	3	3	330
815-915	0	1541	177	1718	0	1498	144	1642	0	0	0	0	0	0	2	2	31
830-930	0	1471	126	1597	0	1499	97	1596	U	U	U	U	U	U	2	2] O1.
PEAK HOUR 745-845	0	1547	345	1892	0	1354	245	1599	0	0	0	0	0	0	2	2	34
DM I																	
PM	0	381	4	385	0	298	6	304	0	0	0	0	1	0	7	8	I 69
02:00-15		335	6	341	0	325	6	331	0	0	0	0	2	0	1	3	6
15-30	0				0	419	1	420	0	0	0	0	0	0	ò	0	8
30-45	0	381	1	382				437	0	0	0	0	0	0	6	6	7
45-00	0	303	32	335	0	417	20		0	0	0	0	0	0	8	8	9
03:00-15	0	360	43	403	0	479	47	526	5.0	0	0	0	0	0	0	0	8
15-30	0	319	23	342	0	471	16	487	0		0	0	0	0	11	11	j 9
30-45	0	363	16	379	0	514	10	524	0	0	0	0	0	0	0	0	l 9
45-00	0	352	6	358	0	484	67	551	0	0	_		2	0	2	4	9
04:00-15	0	416	15	431	0	495	22	517	0	0	0	0	0	_	29		9
15-30	0	348	52	400	0	510	48	558	0	0	0	0		0		29	
30-45	0	353	40	393	0	506	22	528	0	0	0	0	0	0	16	16	9
45-00	0	375	3	378	0	525	0	525	0	0	0	0	0	0	0	0	9
PM																	1
3 HOUR									-				_	_		0.5	1 100
TOTALS	0	4286	241	4527	0	5443	265	5708	0	0	0	0	5	0	80	85	103
1 HOUR																	ļ.
TOTALS														550	0.000000		
02-03	0	1400	43	1443	0	1459	33	1492	0	0	0	0	3	0	14	17	29
215-315	0	1379	82	1461	0	1640	74	1714	0	0	0	0	2	0	15	17	31
230-330	0	1363	99	1462	0	1786	84	1870	0	0	0	0	0	0	14	14	33
245-345	0	1345	114	1459	0	1881	93	1974	0	0	0	0	0	0	25	25	34
03-04	0	1394	88	1482	0	1948	140	2088	0	0	0	0	0	0	19	19	35
315-415	0	1450	60	1510	0	1964	115	2079	0	0	0	0	2	0	13	15	36
330-430	0	1479	89	1568	0	2003	147	2150	0	0	0	0	2	0	42	44	37
345-445	0	1469	113	1582	0	1995	159	2154	0	0	0	0	2	0	47	49	37
04-05	0	1492	110	1602	0	2036	92	2128	0	0	0	0	2	0	47	49	j 37
PEAK HOUR		1702	110	1002	Ü												İ

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD VEHICLE TURNING MOVEMENT COUNT - SUMMARY

STSLTD STSLTD STSLTD STSLTD STSLTD

Entered by:

STSLTD STSLTD STSLTD STSLTD

Intersection of: Old C and: Tilde

Counted by:

Old Georgetown Rd
Tilden Middle School Entrance
RJ bikes only

Location : Date : Weather : Montgomery County 01/09/2019 Day: Fair

SKN

Wednesday

STREET TRAFFIC STUDIES

LTD

	on:	C FROM Old Geo		Rd	TRAFFI on:	C FROM Old Geo	SOUTH orgetown	Rd	TRAFFI		WEST		TRAFF on:	FIC FROM	M EAST Middle Scl		TOTA N+S
TIME 		THRU		TOTAL		THRU	RIGHT			THRU	LEFT		LEFT			TOTAL	1
AM																	i
6:30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
45-00 i	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
30-45	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	i
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
45-00	0			-			_	0	0	0	0	0	0	0	0	0	1
8:00-15	0	0	0	0	0	0	0	_				_		0	0		!
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0			0	!
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ.
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
9:00-15 j	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
AM I	U	0	0	Ü							3.5						i
																	i
3 HOUR			•		0			0	0	0	0	0	0	0	0	0	1
TOTALS	0	0	0	0	0	0	0	0	0	U	U	U	U	U	U	U	1
1 HOUR																	1
TOTALS												200					!
30-730	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ
645-745	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07-08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15-815	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ
30-830	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
45-845					_	1	0	0	0	0	0	0	0	0	0	0	1
08-09	0	0	0	0	0	0							_	_	0	0	!
315-915	0	0	0	0	0	0	0	0	0	0	0	0	0	0			!
330-930	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	!
EAK HOUR I																	
645-745	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
PM										100	150	_					į
2:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	!
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
30-45	0	0	_					0	0	0	0	0	0	0	0	0	1
45-00	0	0	0	0	0	0	0							0	0	0	-
4:00-15	0	0	0	0	0	0	0	0	0	0	0	0	0				!
15-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ.
30-45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ
45-00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
PM		_															1
B HOUR	i																1
TOTALS	l I 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	i
	U	U	U	U	U	U	U	U	U	U	J	U		J	J	3	ì
HOUR																	1
OTALS												_	_		•	_	1
02-03	0	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	_	ļ
15-315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Į.
30-330	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
245-345	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
03-04	0.70	-						0	0	0	0	0	0	0	0	0	i
315-415	0	0	0	0	0	0	0						0	0	0	0	1
330-430	0	0	0	0	0	0	0	0	0	0	0	0		-			1
345-445	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	!
343-443		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	U	U	U	0	•	•	U		•	•					•
04-05 PEAK HOUR	0 	0	U	U	Ü	Ū	·	·	Ü	Ü	Ü		·				i

STSLTD S PEDESTRIAN COUNT - SUMMARY
Intersection of: Old Georgetown Rd
and: Tilden Middle School Entrance Location: Montgomery County
Date: 1/09/2019 Day:
Weather: Fair

Wednesday

and: Counted by:	Tilden Mi RJ		ool Entrance		Weather Entered		air KN		
<u> </u>	NORTH	LEG	EAST			LEG	WEST		
	EB	WB	NB	SB	EB	WB	NB	SB	TOTAL
								1	
06:30-45	0	0	. 0	0	0	0	0	0	0
45-00	0	0	0	1	0	0	0	0	1
07:00-15	0	0	0	0	0	0	0	0	0
15-30	0	0	1	0	0	0	0	0	1
30-45	0	0	0	0	0	0	0	0	0
45-00	0	0	0	0	0	0	0	0	0 1
08:00-15 15-30	0	0	1	0	0	0	0	0	1 1
30-45	0	0	o	0	0	0	0	0	0
45-00	0	0	0	1	0	0	0	ō	1
09:00-15	0	0	0	o	0	0	0	0	o j
15-30	0	0	0	0	0	0	0	0	o į
i AM i									1
j 3 HOUR j		*							
TOTALS	0	0	3	2	0	0	0	0	5
1 HOUR									!
TOTALS						0	0	0	2
630-730	0	0	1 1	1 1	0	0	0	0 1	2
645-745 07-08	0	0	1	0	0	0	0	0	1
715-815	0	0	. 2	0	0	0	0	0	2
730-830	0	0	2	0	0	0	ō	0	2
745-845	0	0	2	0	0	0	0	0	2
08-09	0	0	2	1	0	0	0	. 0	3
815-915	0	0	1	1	0	0	0	0	2
830-930	0	0	0	1	0	0	0	0	1 [
PEAK HOUR							_		
08-09 .	0	0	2	1	0	0	0	0	3
į PM į									
02:00-15	0	0	0	0	0	0	0	0	0 0
15-30 30-45	0	0	0	0	0	0	0	0	0
45-00	0	0	2	2	0	0	0	0	4
03:00-15	0	0	ō	0	0	0	0	0	0
15-30	0	0	0	0	0	0	0	0	0
30-45	0	0	0	0	0	0	0	0	0 [
45-00	0	0	0	0	0	0	0	0	0
04:00-15	0	0	0	0	0	0	0	0	0
15-30	0	0	0	0	0	0	0	0	0 1 1
30-45	0	0	0	1	0	0	0	0	
45-00 PM	U	U	U	U	U	U		· ·	
3 HOUR									i i
TOTALS	. 0	0	2	3	0	0	0	0	5
1 HOUR									1
j TOTALS į									
02-03	0	0	2	2	0	0	0	0	4
215-315	0	0	2	2	0	0	0	0	4
230-330	0	0	2	2	0	0	0 0	0	4 4
245-345	0	0 0	2	2	0	0	0	0	1 4 1
03-04 315-415	0	0	0	0	0	0	0	.0	0 1
330-430	0	0	0	0	0	0	0	0	0 1
345-445	0	0	0	1	0	0	Ő	0	1 1
04-05	0	Ö	0	1	0	0	0	0	1 1
PEAK HOUR									i i
245-345	0	0	2	2	0	0	0	0	4

STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD STSLTD

APPENDIX G CAPACITY CALCULATIONS - TOTAL CONDITIONS

	≯	-	•	•	←	1	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ન	79	14.14	1111			11111	7"
Traffic Volume (vph)	0	0	0	150	13	656	149	1320	0	0	1976	875
Future Volume (vph)	0	0	0	150	13	656	149	1320	0	0	1976	875
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Lane Util. Factor				0.95	0.95	1.00	0.97	0.86			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1681	1698	1583	3433	6408			7544	1583
Flt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1681	1698	1583	3433	6408			7544	1583
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	161	14	705	160	1419	0	0	2125	941
RTOR Reduction (vph)	0	0	0	0	0	39	0	0	0	0	0	589
Lane Group Flow (vph)	0	0	0	87	88	666	160	1419	0	0	2125	352
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				65.5	65.5	65.5	8.7	70.5			55.3	55.3
Effective Green, g (s)				65.5	65.5	65.5	8.7	70.5			55.3	55.3
Actuated g/C Ratio				0.44	0.44	0.44	0.06	0.47			0.37	0.37
Clearance Time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				734	741	691	199	3011			2781	583
v/s Ratio Prot							c0.05	0.22			c0.28	
v/s Ratio Perm				0.05	0.05	c0.42						0.22
v/c Ratio				0.12	0.12	0.96	0.80	0.47			0.76	0.60
Uniform Delay, d1				25.1	25.1	41.1	69.8	27.1			41.6	38.5
Progression Factor				1.00	1.00	1.00	1.00	1.00			1.09	3.67
Incremental Delay, d2				0.1	0.1	25.4	20.5	0.5			1.0	2.2
Delay (s)				25.2	25.2	66.5	90.3	27.6			46.1	143.4
Level of Service				С	С	Е	F	С			D	F
Approach Delay (s)		0.0			58.3			33.9			76.0	
Approach LOS		Α			Е			C			Е	
Intersection Summary												
HCM 2000 Control Delay			61.2	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	ity ratio		0.87									
Actuated Cycle Length (s)			150.0	Sı	ım of lost	time (s)			20.5			
Intersection Capacity Utilizat	ion		80.0%			of Service			D			
Analysis Period (min)			15									
o Critical Lana Craun												

	۶	→	*	*	-	4	4	1	<i>></i>	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				79	र्स	7"	14.54	1111			11111	77
Traffic Volume (vph)	0	0	0	166	8	317	284	1861	0	0	1348	643
Future Volume (vph)	0	0	0	166	8	317	284	1861	0	0	1348	643
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Lane Util. Factor				0.95	0.95	1.00	0.97	0.86			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1681	1693	1583	3433	6408			7544	1583
Flt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1681	1693	1583	3433	6408			7544	1583
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	0	0	178	9	341	305	2001	0	0	1449	691
RTOR Reduction (vph)	0	0	0	0	0	54	0	0	0	0	0	329
Lane Group Flow (vph)	0	0	0	93	94	287	305	2001	0	0	1449	362
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				32.7	32.7	32.7	18.2	103.3			78.6	78.6
Effective Green, g (s)				32.7	32.7	32.7	18.2	103.3			78.6	78.6
Actuated g/C Ratio				0.22	0.22	0.22	0.12	0.69			0.52	0.52
Clearance Time (s)				8.0	8.0	8.0	6.5	6.0			6.0	6.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				366	369	345	416	4412			3953	829
v/s Ratio Prot							c0.09	c0.31			0.19	
v/s Ratio Perm				0.06	0.06	c0.18						0.23
v/c Ratio				0.25	0.25	0.83	0.73	0.45			0.37	0.44
Uniform Delay, d1				48.6	48.6	56.0	63.6	10.6			21.0	22.0
Progression Factor				1.00	1.00	1.00	1.00	1.00			1.02	2.48
Incremental Delay, d2				0.4	0.4	15.6	6.6	0.3			0.2	1.0
Delay (s)				48.9	48.9	71.6	70.1	10.9			21.5	55.5
Level of Service				D	D	E	E	В			C	E
Approach Delay (s)		0.0			63.6			18.7			32.5	
Approach LOS		Α			E			В			C	
Intersection Summary												
HCM 2000 Control Delay			29.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacit	ty ratio		0.60									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			20.5			
Intersection Capacity Utilization	on		69.8%			of Service)		С			
Analysis Period (min)			15									

c Critical Lane Group

	۶	-	~	1	-	•	1	†	<i>*</i>	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ ⊅		14.54	44	7	75	ተተተ	7	ሻ	↑ ↑↑	
Traffic Volume (veh/h)	189	489	169	623	369	105	205	1358	306	68	1795	136
Future Volume (veh/h)	189	489	169	623	369	105	205	1358	306	68	1795	136
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	191	494	171	629	373	106	207	1372	309	69	1813	137
Adj No. of Lanes	2	2	0	2	2	1	1	3	1	1	3	0
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	608	457	157	613	630	282	210	2222	692	177	1843	139
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	0.09	0.44	0.44	0.04	0.38	0.38
Sat Flow, veh/h	3442	2586	890	3442	3539	1583	1774	5085	1583	1774	4825	364
Grp Volume(v), veh/h	191	337	328	629	373	106	207	1372	309	69	1272	678
Grp Sat Flow(s), veh/h/ln	1721	1770	1706	1721	1770	1583	1774	1695	1583	1774	1695	1799
Q Serve(g_s), s	7.3	26.5	26.5	26.7	14.5	8.8	13.3	31.2	20.5	3.5	55.7	56.0
Cycle Q Clear(g_c), s	7.3	26.5	26.5	26.7	14.5	8.8	13.3	31.2	20.5	3.5	55.7	56.0
Prop In Lane	1.00		0.52	1.00		1.00	1.00		1.00	1.00		0.20
Lane Grp Cap(c), veh/h	608	313	301	613	630	282	210	2222	692	177	1295	687
V/C Ratio(X)	0.31	1.08	1.09	1.03	0.59	0.38	0.99	0.62	0.45	0.39	0.98	0.99
Avail Cap(c_a), veh/h	608	313	301	613	630	282	210	2222	692	220	1295	687
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.59	0.59	0.59	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	53.8	61.7	61.8	61.7	56.6	54.3	47.9	32.6	29.5	28.8	45.9	46.0
Incr Delay (d2), s/veh	0.3	73.4	77.3	35.0	0.9	0.5	58.5	1.3	2.1	1.4	21.2	31.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	19.3	18.9	15.7	7.2	3.9	12.0	14.9	9.3	1.8	29.8	33.8
LnGrp Delay(d),s/veh	54.1	135.2	139.1	96.6	57.5	54.8	106.4	33.9	31.6	30.2	67.0	77.1
LnGrp LOS	D	F	F	F	Е	D	F	С	С	С	Е	Е
Approach Vol, veh/h		856			1108			1888			2019	
Approach Delay, s/veh		118.6			79.5			41.5			69.1	
Approach LOS		F			Е			D			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.8	72.0		33.0	20.0	63.8		33.2				
Change Period (Y+Rc), s	6.5	6.5		6.5	6.5	6.5		6.5				
Max Green Setting (Gmax), s	8.9	61.9		26.5	13.5	57.3		26.7				
Max Q Clear Time (g_c+l1), s	5.5	33.2		28.5	15.3	58.0		28.7				
Green Ext Time (p_c), s	0.0	13.9		0.0	0.0	0.0		0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			69.4									
HCM 2010 LOS			E									

	۶	-	*	1	4	1	1	†	1	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	ሶ ጮ		A.A.	ተተ	7	7	ተተተ	7	N.	ተተኈ	
Traffic Volume (veh/h)	243	194	126	337	238	48	198	1594	274	98	1511	218
Future Volume (veh/h)	243	194	126	337	238	48	198	1594	274	98	1511	218
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1863	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	264	211	137	366	259	52	215	1733	298	107	1642	237
Adj No. of Lanes	2	2	0	2	2	1	1	3	1	1	3	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	410	250	155	427	439	196	240	2751	857	187	2270	326
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.08	0.54	0.54	0.04	0.51	0.51
Sat Flow, veh/h	3442	2098	1304	3442	3539	1583	1774	5085	1583	1774	4493	646
Grp Volume(v), veh/h	264	176	172	366	259	52	215	1733	298	107	1237	642
Grp Sat Flow(s), veh/h/ln	1721	1770	1633	1721	1770	1583	1774	1695	1583	1774	1695	1749
Q Serve(g_s), s	11.0	14.6	15.5	15.6	10.4	4.5	9.4	35.6	16.0	4.4	42.7	43.0
Cycle Q Clear(g_c), s	11.0	14.6	15.5	15.6	10.4	4.5	9.4	35.6	16.0	4.4	42.7	43.0
Prop In Lane	1.00		0.80	1.00		1.00	1.00		1.00	1.00		0.37
Lane Grp Cap(c), veh/h	410	211	194	427	439	196	240	2751	857	187	1713	884
V/C Ratio(X)	0.64	0.84	0.88	0.86	0.59	0.26	0.90	0.63	0.35	0.57	0.72	0.73
Avail Cap(c_a), veh/h	424	218	201	470	484	216	331	2751	857	264	1713	884
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.68	0.68	0.68	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	63.0	64.6	65.0	64.4	62.1	59.5	32.9	24.0	19.5	22.6	28.9	29.0
Incr Delay (d2), s/veh	3.2	23.3	32.9	9.8	1.1	0.5	20.4	1.1	1.1	2.8	2.7	5.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.4	8.5	8.8	8.0	5.1	2.0	10.1	17.0	7.2	2.3	20.6	21.9
LnGrp Delay(d),s/veh	66.2	88.0	97.9	74.2	63.2	60.0	53.4	25.1	20.6	25.3	31.6	34.2
LnGrp LOS	Е	F	F	Е	Е	Е	D	С	С	С	С	С
Approach Vol, veh/h		612			677			2246			1986	
Approach Delay, s/veh		81.4			68.9			27.2			32.1	
Approach LOS		F			E			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.9	87.6		24.4	18.2	82.3		25.1				
Change Period (Y+Rc), s	6.5	6.5		6.5	6.5	6.5		6.5				
Max Green Setting (Gmax), s	12.9	72.1		18.5	19.5	65.5		20.5				
Max Q Clear Time (g_c+l1), s	6.4	37.6		17.5	11.4	45.0		17.6				
Green Ext Time (p_c), s	0.1	19.9		0.3	0.4	13.9		1.0				
Intersection Summary												
HCM 2010 Ctrl Delay			40.1									
HCM 2010 LOS			D									

Baseline

	۶	→	*	1	-	4	1	↑	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7	7	ተተ₽		ሻ	ተተ₽	
Traffic Volume (vph)	8	0	12	150	0	26	29	1551	146	50	1972	35
Future Volume (vph)	8	0	12	150	0	26	29	1551	146	50	1972	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Lane Util. Factor		1.00		1.00		1.00	1.00	0.91		1.00	0.91	
Frt		0.92		1.00		0.85	1.00	0.99		1.00	1.00	
Flt Protected		0.98		0.95		1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1675		1770		1583	1770	5020		1770	5072	
Flt Permitted		0.98		0.74		1.00	0.07	1.00		0.11	1.00	
Satd. Flow (perm)		1675		1385		1583	135	5020		203	5072	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	8	0	12	156	0	27	30	1616	152	52	2054	36
RTOR Reduction (vph)	0	18	0	0	0	23	0	6	0	0	1	0
Lane Group Flow (vph)	0	3	0	156	0	4	30	1762	0	52	2089	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		22.1		22.1		22.1	116.4	116.4		116.4	116.4	
Effective Green, g (s)		22.1		22.1		22.1	116.4	116.4		116.4	116.4	
Actuated g/C Ratio		0.15		0.15		0.15	0.78	0.78		0.78	0.78	
Clearance Time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Vehicle Extension (s)		3.0		3.0		3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		246		204		233	104	3895		157	3935	
v/s Ratio Prot		210		201		200	101	0.35		101	c0.41	
v/s Ratio Perm		0.00		c0.11		0.00	0.22	0.00		0.26		
v/c Ratio		0.01		0.76		0.02	0.29	0.45		0.33	0.53	
Uniform Delay, d1		54.6		61.5		54.7	4.8	5.8		5.1	6.4	
Progression Factor		1.00		1.00		1.00	1.00	1.00		0.66	0.65	
Incremental Delay, d2		0.0		15.6		0.0	6.9	0.4		2.4	0.2	
Delay (s)		54.6		77.0		54.7	11.7	6.2		5.7	4.4	
Level of Service		D		E		D	В	A		А	Α	
Approach Delay (s)		54.6		_	73.8			6.3			4.4	
Approach LOS		D			E			A			Α	
Intersection Summary												
HCM 2000 Control Delay			8.6	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.57									
Actuated Cycle Length (s)			150.0	S	um of lost	t time (s)			11.5			
Intersection Capacity Utilizat	tion		65.3%		CU Level)		С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	۶	→	*	•	-	4	4	†	<i>></i>	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7		7	ሻ	↑ ↑↑		ሻ	ተተ _ጉ	
Traffic Volume (vph)	6	0	8	207	0	23	44	1913	190	26	1573	9
Future Volume (vph)	6	0	8	207	0	23	44	1913	190	26	1573	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Lane Util. Factor		1.00		1.00		1.00	1.00	0.91		1.00	0.91	
Frt		0.92		1.00		0.85	1.00	0.99		1.00	1.00	
Flt Protected		0.98		0.95		1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684		1770		1583	1770	5016		1770	5081	
Flt Permitted		0.98		0.75		1.00	0.11	1.00		0.05	1.00	
Satd. Flow (perm)		1684		1392		1583	196	5016		88	5081	1000
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	0	9	230	0	26	49	2126	211	29	1748	10
RTOR Reduction (vph)	0	13	0	0	0	20	0	7	0	0	0	0
Lane Group Flow (vph)	0	3	0	230	0	6	49	2330	0	29	1758	0
Turn Type	Perm	NA		Perm		Perm	Perm	NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		29.0		29.0		29.0	109.5	109.5		109.5	109.5	
Effective Green, g (s)		29.0		29.0		29.0	109.5	109.5		109.5	109.5	
Actuated g/C Ratio		0.19		0.19		0.19	0.73	0.73		0.73	0.73	
Clearance Time (s)		5.0		5.0		5.0	6.5	6.5		6.5	6.5	
Vehicle Extension (s)		3.0		3.0		3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		325		269		306	143	3661		64	3709	
v/s Ratio Prot								c0.46			0.35	
v/s Ratio Perm		0.00		c0.17		0.00	0.25			0.33		
v/c Ratio		0.01		0.86		0.02	0.34	0.64		0.45	0.47	
Uniform Delay, d1		48.9		58.5		49.0	7.3	10.2		8.2	8.4	
Progression Factor		1.00		1.00		1.00	1.00	1.00		0.79	0.81	
Incremental Delay, d2		0.0		22.3		0.0	6.4	0.9		19.2	0.4	
Delay (s)		48.9		80.8		49.0	13.7	11.1		25.6	7.2	
Level of Service		D		F		D	В	В		C	Α	
Approach Delay (s)		48.9			77.6			11.1			7.5	
Approach LOS		D			Е			В			Α	
Intersection Summary												
HCM 2000 Control Delay			13.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			11.5			
Intersection Capacity Utiliza	tion		68.1%		CU Level)		С			
Analysis Period (min)			15									
a Critical Lana Croup												

c Critical Lane Group

	•	→	*	*	-	•	1	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413		14/4	f)		1	^	7	N,	ተተ _ጉ	
Traffic Volume (veh/h)	162	185	187	601	177	2	183	929	497	28	1251	192
Future Volume (veh/h)	162	185	187	601	177	2	183	929	497	28	1251	192
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	172	197	199	639	188	2	195	988	529	30	1331	204
Adj No. of Lanes	0	2	0	2	1	0	1	2	1	1	3	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	168	197	210	693	370	4	229	1551	694	166	1703	261
Arrive On Green	0.17	0.17	0.17	0.20	0.20	0.20	0.08	0.44	0.44	0.02	0.38	0.38
Sat Flow, veh/h	1008	1183	1261	3442	1840	20	1774	3539	1583	1774	4451	682
Grp Volume(v), veh/h	309	0	259	639	0	190	195	988	529	30	1014	521
Grp Sat Flow(s), veh/h/ln	1812	0	1640	1721	0	1859	1774	1770	1583	1774	1695	1742
Q Serve(g_s), s	25.0	0.0	23.4	27.3	0.0	13.6	9.7	32.6	42.3	1.5	39.5	39.5
Cycle Q Clear(g_c), s	25.0	0.0	23.4	27.3	0.0	13.6	9.7	32.6	42.3	1.5	39.5	39.5
Prop In Lane	0.56	900	0.77	1.00		0.01	1.00		1.00	1.00		0.39
Lane Grp Cap(c), veh/h	302	0	273	693	0	374	229	1551	694	166	1297	667
V/C Ratio(X)	1.02	0.00	0.95	0.92	0.00	0.51	0.85	0.64	0.76	0.18	0.78	0.78
Avail Cap(c_a), veh/h	302	0	273	723	0	390	272	1551	694	184	1297	667
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	62.5	0.0	61.8	58.8	0.0	53.3	33.1	32.8	35.5	29.0	40.8	40.8
Incr Delay (d2), s/veh	58.0	0.0	40.1	17.0	0.0	1.1	19.5	2.0	7.8	0.5	4.7	8.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	17.4	0.0	13.7	14.7	0.0	7.1	6.0	16.4	20.0	0.8	19.3	20.6
LnGrp Delay(d),s/veh	120.5	0.0	102.0	75.7	0.0	54.4	52.6	34.8	43.3	29.5	45.5	49.6
LnGrp LOS	F	0.0	F	E	0.0	D	D	C	D	C	D	D
Approach Vol, veh/h		568			829			1712			1565	
		112.1			70.8			39.5			46.6	
Approach LOS		112.1 F			70.6 E			39.5 D			40.0 D	
Approach LOS											D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.1	72.2		31.0	17.4	63.9		37.7				
Change Period (Y+Rc), s	5.5	6.5		6.0	5.5	6.5		7.5				
Max Green Setting (Gmax), s	5.1	62.9		25.0	15.5	52.5		31.5				
Max Q Clear Time (g_c+l1), s	3.5	44.3		27.0	11.7	41.5		29.3				
Green Ext Time (p_c), s	0.0	9.1		0.0	0.2	7.3		0.9				
Intersection Summary												
HCM 2010 Ctrl Delay			56.2									
HCM 2010 LOS			E									

	۶	-	7	1	4	1	1	†	*	1	\	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€1 }		14.54	₽		7	ተተ	7	N.	ተተĵ₃	
Traffic Volume (veh/h)	91	75	40	497	83	12	131	980	464	31	920	84
Future Volume (veh/h)	91	75	40	497	83	12	131	980	464	31	920	84
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1863	1863	1900	1863	1863	1863	1863	1863	1900
Adj Flow Rate, veh/h	100	82	44	546	91	13	144	1077	510	34	1011	92
Adj No. of Lanes	0	2	0	2	1	0	1	2	1	1	3	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	124	108	59	624	289	41	335	1914	856	202	2438	221
Arrive On Green	0.08	0.08	0.08	0.18	0.18	0.18	0.05	0.54	0.54	0.03	0.51	0.51
Sat Flow, veh/h	1502	1308	714	3442	1595	228	1774	3539	1583	1774	4746	431
Grp Volume(v), veh/h	119	0	107	546	0	104	144	1077	510	34	722	381
Grp Sat Flow(s), veh/h/ln	1788	0	1737	1721	0	1823	1774	1770	1583	1774	1695	1787
Q Serve(g_s), s	9.8	0.0	9.0	23.2	0.0	7.4	5.7	30.1	32.7	1.4	19.7	19.8
Cycle Q Clear(g_c), s	9.8	0.0	9.0	23.2	0.0	7.4	5.7	30.1	32.7	1.4	19.7	19.8
Prop In Lane	0.84		0.41	1.00		0.13	1.00		1.00	1.00		0.24
Lane Grp Cap(c), veh/h	148	0	144	624	0	330	335	1914	856	202	1741	918
V/C Ratio(X)	0.80	0.00	0.74	0.88	0.00	0.31	0.43	0.56	0.60	0.17	0.41	0.42
Avail Cap(c_a), veh/h	215	0	208	815	0	431	402	1914	856	222	1741	918
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	67.6	0.0	67.2	59.8	0.0	53.3	17.0	22.7	23.3	18.8	22.5	22.6
Incr Delay (d2), s/veh	13.2	0.0	8.1	8.5	0.0	0.5	0.9	1.2	3.0	0.4	0.7	1.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.4	0.0	4.7	11.7	0.0	3.8	2.8	15.0	15.0	0.7	9.4	10.1
LnGrp Delay(d),s/veh	80.8	0.0	75.3	68.2	0.0	53.9	17.9	23.9	26.4	19.2	23.3	23.9
LnGrp LOS	F	0.0	70.0 E	E	0.0	D	В	C	C	В	C	C
Approach Vol, veh/h		226			650			1731			1137	
		78.2			65.9			24.2			23.4	
Approach Delay, s/veh Approach LOS		70.Z			65.5 E			C C			C C	
		a Zavani bili dina				0	7				C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.3	87.6		18.4	13.3	83.6		34.7				
Change Period (Y+Rc), s	5.5	6.5		6.0	5.5	6.5		7.5				
Max Green Setting (Gmax), s	5.5	65.5		18.0	13.5	57.5		35.5				
Max Q Clear Time (g_c+l1), s	3.4	34.7		11.8	7.7	21.8		25.2				
Green Ext Time (p_c), s	0.0	12.4		0.6	0.2	9.3		2.0				
Intersection Summary												
HCM 2010 Ctrl Delay			34.4									
HCM 2010 LOS			С									

	۶	-	*	•	4	•	1	†	/	1	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ሶ ጮ		ሻ	ሶ β			4			4	
Traffic Volume (veh/h)	13	729	30	2	783	7	59	4	14	11	2	67
Future Volume (veh/h)	13	729	30	2	783	7	59	4	14	11	2	67
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	15	819	34	2	880	8	66	4	16	12	2	75
Adj No. of Lanes	1	2	0	1	2	0	0	1	0	0	1	0
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	143	1097	46	138	1088	10	616	42	137	124	44	697
Arrive On Green	0.02	0.32	0.32	0.00	0.30	0.30	0.53	0.53	0.53	0.53	0.53	0.53
Sat Flow, veh/h	1774	3463	144	1774	3594	33	1060	80	261	164	83	1325
Grp Volume(v), veh/h	15	418	435	2	433	455	86	0	0	89	0	0
Grp Sat Flow(s), veh/h/ln	1774	1770	1837	1774	1770	1857	1401	0	0	1572	0	0
Q Serve(g_s), s	0.6	23.3	23.3	0.1	24.9	24.9	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.6	23.3	23.3	0.1	24.9	24.9	2.6	0.0	0.0	3.0	0.0	0.0
Prop In Lane	1.00	20.0	0.08	1.00	2110	0.02	0.77		0.19	0.13	0.0	0.84
Lane Grp Cap(c), veh/h	143	560	582	138	536	562	795	. 0	0	864	0	0.01
V/C Ratio(X)	0.10	0.75	0.75	0.01	0.81	0.81	0.11	0.00	0.00	0.10	0.00	0.00
Avail Cap(c_a), veh/h	226	901	935	246	901	945	795	0.00	0.00	864	0	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.48	0.48	0.48	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	28.6	33.6	33.6	28.7	35.4	35.4	13.0	0.0	0.0	13.1	0.0	0.0
Incr Delay (d2), s/veh	0.2	1.0	0.9	0.0	3.0	2.8	0.3	0.0	0.0	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	11.5	12.0	0.0	12.6	13.2	1.4	0.0	0.0	1.4	0.0	0.0
LnGrp Delay(d),s/veh	28.7	34.6	34.6	28.8	38.4	38.2	13.3	0.0	0.0	13.3	0.0	0.0
LnGrp LOS	C	C	C	C	D	D	В	0.0	0.0	В	0.0	0.0
		868	0		890		<u> </u>	86		U	89	
Approach Vol, veh/h		34.5			38.3			13.3			13.3	
Approach Delay, s/veh		34.3 C									13.3 B	
Approach LOS		C			D			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		63.9	5.3	40.8		63.9	6.8	39.3				
Change Period (Y+Rc), s		6.0	5.0	6.0		6.0	5.0	6.0				
Max Green Setting (Gmax), s		30.0	7.0	56.0		30.0	7.0	56.0				
Max Q Clear Time (g_c+l1), s		4.6	2.1	25.3		5.0	2.6	26.9				
Green Ext Time (p_c), s		0.4	0.0	6.2		0.5	0.0	6.4				
Intersection Summary												
HCM 2010 Ctrl Delay			34.3									
HCM 2010 LOS			С									
			deposit of the first									

Lane Configurations		۶	→	*	V	4	*	1	†	~	1	ţ	1
Traffic Volume (veh/h)	Movement		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h)					7				4				
Number	Traffic Volume (veh/h)				3	511	8		0		1	2	16
Initial Q (Qb), veh	Future Volume (veh/h)	29	563	32	3	511	8	10	0		1	2	16
Ped-Bike Adj(A_pbT)	Number	7	4	14	3	8	18	5	2	12	1	6	16
Parking Bus, Acj	Initial Q (Qb), veh		0			0			0			0	0
Adj Slar Flow, veh/h/ln 1863 1863 1890 1863 1890 1890 1890 1803 1900 1863 1900 1863 1900 1863 1900 1863 1800 1800 1800 1800 1800 1800 1800 180				1.00			1.00						1.00
Adj Flow Rate, veh/h 34 662 38 4 601 9 12 0 29 1 2 Adj No. of Lanes 1 2 0 1 2 0 1 2 0 0 1 0 0 1 Percent Fearly Peak Hour Factor 0.85	Parking Bus, Adj		1.00			1.00							1.00
Adj No. of Lanes 1 2 0 1 2 0 0 1 0 0 1 Peak Hour Factor 0.85	Adj Sat Flow, veh/h/ln				1863		1900		1863		1900	1863	1900
Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	Adj Flow Rate, veh/h												19
Percent Heavy Veh, % 169 834 48 121 789 12 287 21 644 56 109 87 Arrive On Green 0.03 0.25 0.25 0.01 0.22 0.22 0.60 0.00 0.60 0.60 0.60 0.60													0
Cap, veh/h Arrive On Green 0.03 0.25 0.25 0.01 0.22 0.22 0.60 0.00 0.60 0.60 0.60 0.60	Peak Hour Factor												0.85
Arrive On Green 0.03 0.25 0.25 0.01 0.22 0.22 0.60 0.00 0.60 0.60 0.60 0.60	Percent Heavy Veh, %												2
Sat Flow, veh/h 1774 3403 195 1774 3569 53 412 36 1082 36 183 13 Gry Volume(v), veh/h 34 344 366 4 298 312 41 0 0 22 0 0 GP Sat Flow(s), veh/h/ln 1774 1770 1828 1774 1770 1853 1530 0 0 1605 0 Q Serve(g.s), s 1.6 20.0 20.1 0.2 17.3 17.4 0.0	to a contract the second secon												825
Grp Volume(v), veh/h 34 344 356 4 298 312 41 0 0 22 0 Grp Sat Flow(s), veh/h/ln 1774 1770 1828 1774 1770 1853 1530 0 0 1605 0 Q Serve(g_s), s 1.6 20.0 20.1 0.2 17.3 17.4 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 1.6 20.0 20.1 0.2 17.3 17.4 1.1 0.0	Arrive On Green					0.22							0.60
Grp Sat Flow(s), veh/h/ln	Sat Flow, veh/h	1774	3403	195	1774	3569	53	412	36	1082	36	183	1386
Q Serve(g_s), s 1.6 20.0 20.1 0.2 17.3 17.4 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 1.6 20.0 20.1 0.2 17.3 17.4 1.1 0.0 0.0 0.6 0.0 Prop In Lane 1.00 0.11 1.00 0.03 0.29 0.71 0.05 0 Lane Grp Cap(c), veh/h 169 434 448 121 391 410 953 0 0 989 0 V/C Ratio(X) 0.20 0.79 0.79 0.03 0.76 0.76 0.04 0.00 0.00 0.02 0.00 0 V/C Ratio(X) 0.20 0.79 0.79 0.03 0.76 0.76 0.04 0.00 0.0	Grp Volume(v), veh/h	34	344	356	4	298	312	41	0	0	22	0	0
Cycle Q Clear(g_c), s 1.6 20.0 20.1 0.2 17.3 17.4 1.1 0.0 0.6 0.0 Prop In Lane 1.00 0.11 1.00 0.03 0.29 0.71 0.05 0 Lane Grp Cap(c), veh/h 169 434 448 121 391 410 953 0 0 989 0 V/C Ratio(X) 0.20 0.79 0.79 0.03 0.76 0.04 0.00 0.00 0.02 0.00 0 Avail Cap(c_a), veh/h 294 901 931 257 869 910 953 0 0 989 0 HCM Platon Ratio 1.00 1.	Grp Sat Flow(s), veh/h/ln	1774	1770	1828	1774	1770	1853	1530	0	0	1605	0	0
Prop In Lane 1.00 0.11 1.00 0.03 0.29 0.71 0.05 0.05 Lane Grp Cap(c), veh/h 169 434 448 121 391 410 953 0 0 0 989 0 V/C Ratio(X) 0.20 0.79 0.79 0.79 0.03 0.76 0.76 0.04 0.00 0.00 0.02 0.00 0.00 Avail Cap(c_a), veh/h 294 901 931 257 869 910 953 0 0 989 0 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Q Serve(g_s), s	1.6	20.0	20.1	0.2	17.3	17.4	0.0	0.0	0.0	0.0	0.0	0.0
Lane Grp Cap(c), veh/h	Cycle Q Clear(g_c), s	1.6	20.0	20.1	0.2	17.3	17.4	1.1	0.0	0.0	0.6	0.0	0.0
V/C Ratio(X) 0.20 0.79 0.79 0.03 0.76 0.76 0.04 0.00 0.00 0.02 0.00 0 Avail Cap(c_a), veh/h 294 901 931 257 869 910 953 0 0 989 0 HCM Platoon Ratio 1.00	Prop In Lane	1.00		0.11	1.00		0.03	0.29		0.71	0.05		0.86
Avail Cap(c_a), veh/h 294 901 931 257 869 910 953 0 0 989 0 HCM Platoon Ratio 1.00	Lane Grp Cap(c), veh/h	169	434	448	121	391	410	953	0	0	989	0	0
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	V/C Ratio(X)	0.20	0.79	0.79	0.03	0.76	0.76	0.04	0.00	0.00	0.02	0.00	0.00
HCM Platoon Ratio	Avail Cap(c_a), veh/h	294	901	931	257	869	910	953	0	0	989	0	0
Uniform Delay (d), s/veh 32.9 38.9 38.9 34.4 40.1 40.1 9.2 0.0 0.0 9.1 0.0 Incr Delay (d2), s/veh 0.5 2.7 2.6 0.1 3.1 3.0 0.1 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh	Upstream Filter(I)	0.80	0.80	0.80	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Initial Q Delay(d3),s/veh	Uniform Delay (d), s/veh	32.9	38.9	38.9	34.4	40.1	40.1	9.2	0.0	0.0	9.1	0.0	0.0
%ile BackOfQ(50%),veh/ln 0.8 10.1 10.4 0.1 8.8 9.2 0.5 0.0 0.0 0.3 0.0 LnGrp Delay(d),s/veh 33.4 41.6 41.5 34.5 43.2 43.1 9.3 0.0 0.0 9.2 0.0 LnGrp LOS C D D C D D A A A Approach Vol, veh/h 734 614 41 22 2 43.1 9.3 9.2 9.2 Approach Delay, s/veh 41.2 43.1 9.3 9.2 A	Incr Delay (d2), s/veh	0.5	2.7	2.6	0.1	3.1	3.0	0.1	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 33.4 41.6 41.5 34.5 43.2 43.1 9.3 0.0 0.0 9.2 0.0 LnGrp LOS C D D C D D A A Approach Vol, veh/h 734 614 41 22 Approach Delay, s/veh 41.2 43.1 9.3 9.2 Approach LOS D D A A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Gree	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp LOS C D D C D D A Approach Vol, veh/h 734 614 41 22 Approach Delay, s/veh 41.2 43.1 9.3 9.2 Approach LOS D D A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1	%ile BackOfQ(50%),veh/ln	0.8	10.1	10.4	0.1	8.8	9.2	0.5	0.0	0.0	0.3	0.0	0.0
Approach Vol, veh/h 734 614 41 22 Approach Delay, s/veh 41.2 43.1 9.3 9.2 Approach LOS D D A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1	LnGrp Delay(d),s/veh	33.4	41.6	41.5	34.5	43.2	43.1	9.3	0.0	0.0	9.2	0.0	0.0
Approach Delay, s/veh 41.2 43.1 9.3 9.2 Approach LOS D D A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+I1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary	LnGrp LOS	С	D	D	С	D	D	Α			Α		
Approach Delay, s/veh 41.2 43.1 9.3 9.2 Approach LOS D D A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary	Approach Vol, veh/h		734			614			41			22	
Approach LOS D D A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+I1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1			41.2			43.1			9.3			9.2	
Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary			D			D			Α			Α	
Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary	Timer	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 71.5 5.6 33.0 71.5 8.2 30.3 Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary	Assigned Phs		2	3	4		6	7	8				
Change Period (Y+Rc), s 6.0 5.0 6.0 5.0 6.0 Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+I1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary				5.6	33.0								
Max Green Setting (Gmax), s 28.0 9.0 56.0 28.0 11.0 54.0 Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary				5.0			6.0						
Max Q Clear Time (g_c+l1), s 3.1 2.2 22.1 2.6 3.6 19.4 Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary				9.0									
Green Ext Time (p_c), s 0.2 0.0 4.9 0.1 0.0 4.1 Intersection Summary													
HCM 2010 Ctrl Delay 40.6	Intersection Summary												
A STATE OF THE PARTY OF THE PAR	HCM 2010 Ctrl Delay			40.6									
HCM 2010 LOS D	HCM 2010 LOS			D									

	1	4	†	1	1	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻ	7	ተ ተኈ		ሻ	ተተተ		
Traffic Volume (vph)	113	95	1558	232	412	1722		
Future Volume (vph)	113	95	1558	232	412	1722		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	5.5		4.5	5.5		
Lane Util. Factor	1.00	1.00	0.91		1.00	0.91		
Frt	1.00	0.85	0.98		1.00	1.00		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1770	1583	4986		1770	5085		
FIt Permitted	0.95	1.00	1.00		0.08	1.00		
Satd. Flow (perm)	1770	1583	4986		154	5085		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	123	103	1693	252	448	1872		
RTOR Reduction (vph)	0	90	18	0	0	0		
Lane Group Flow (vph)	123	13	1927	0	448	1872		
Turn Type	Prot	Perm	NA		pm+pt	NA		
Protected Phases	8		2		1	6		
Permitted Phases		8			6			
Actuated Green, G (s)	11.8	11.8	44.0		70.6	70.6		
Effective Green, g (s)	11.8	11.8	44.0		70.6	70.6		
Actuated g/C Ratio	0.13	0.13	0.47		0.75	0.75		
Clearance Time (s)	6.0	6.0	5.5		4.5	5.5		
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	222	198	2336		496	3823		
v/s Ratio Prot	c0.07		0.39		c0.21	0.37		
v/s Ratio Perm		0.01			c0.47			
v/c Ratio	0.55	0.07	0.82		0.90	0.49		
Uniform Delay, d1	38.6	36.2	21.6		27.3	4.6		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	3.0	0.1	3.5		19.6	0.5		
Delay (s)	41.6	36.3	25.1		46.9	5.0		
Level of Service	D	D	C		D	Α		
Approach Delay (s)	39.2		25.1			13.1		
Approach LOS	D		C			В		
Intersection Summary								
HCM 2000 Control Delay			19.6	F	ICM 2000	Level of Servi	ce	В
HCM 2000 Volume to Capac	ity ratio		0.88					
Actuated Cycle Length (s)			93.9	5	Sum of los	t time (s)		16.0
Intersection Capacity Utilizat	ion		77.7%			of Service		D
Analysis Period (min)			15					
a Critical Lana Craun								

	1	*	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	79	71	ተተ _ጉ		79	ተተተ		
raffic Volume (vph)	145	144	1875	67	99	1689		
ture Volume (vph)	145	144	1875	67	99	1689		
al Flow (vphpl)	1900	1900	1900	1900	1900	1900		
tal Lost time (s)	4.5	4.5	4.5		4.5	4.5		
ne Util. Factor	1.00	1.00	0.91		1.00	0.91		
	1.00	0.85	0.99		1.00	1.00		
Protected	0.95	1.00	1.00		0.95	1.00		
atd. Flow (prot)	1770	1583	5059		1770	5085		
Permitted	0.95	1.00	1.00		0.05	1.00		
td. Flow (perm)	1770	1583	5059		102	5085		
ak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
j. Flow (vph)	158	157	2038	73	108	1836		
OR Reduction (vph)	0	136	3	0	0	0		
ne Group Flow (vph)	158	21	2108	0	108	1836		
ırn Type	Prot	Perm	NA		pm+pt	NA		
otected Phases	8		2		1	6		
mitted Phases		8			6			
uated Green, G (s)	15.3	15.3	76.7		89.6	89.6		
ective Green, g (s)	15.3	15.3	76.7		89.6	89.6		
tuated g/C Ratio	0.13	0.13	0.67		0.79	0.79		
earance Time (s)	4.5	4.5	4.5		4.5	4.5		
hicle Extension (s)	3.0	3.0	3.0		3.0	3.0		
ne Grp Cap (vph)	237	212	3406		203	4000		
Ratio Prot	c0.09		c0.42		0.04	c0.36		
Ratio Perm		0.01			0.38			
Ratio	0.67	0.10	0.62		0.53	0.46		
niform Delay, d1	46.9	43.3	10.4		14.7	4.1		
ogression Factor	1.00	1.00	1.00		1.00	1.00		
cremental Delay, d2	6.9	0.2	0.9		2.7	0.4		
lay (s)	53.8	43.5	11.3		17.3	4.4		
vel of Service	D	D	В		В	Α		
proach Delay (s)	48.6		11.3			5.2		
proach LOS	D		В			Α		
ersection Summary								
CM 2000 Control Delay			11.2	Н	CM 2000	Level of Service	Э	В
CM 2000 Volume to Capa	city ratio		0.62					
ctuated Cycle Length (s)			113.9	S	um of los	t time (s)		13.5
tersection Capacity Utiliza	ation		62.5%	IC	CU Level	of Service		В
alysis Period (min)			15					

c Critical Lane Group

	•	1	†	*	1	ļ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT			16.00	
Lane Configurations	ሻ	7	ተተ _ጉ		Ŋ	ተተተ				
Traffic Volume (veh/h)	22	26	1764	38	47	1788				
Future Volume (Veh/h)	22	26	1764	38	47	1788				
Sign Control	Stop	20	Free			Free				
Grade	0%		0%			0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
lourly flow rate (vph)	24	28	1917	41	51	1943				
Pedestrians			1017							
ane Width (ft)										
Valking Speed (ft/s)										
ercent Blockage										
ight turn flare (veh)										
edian type			None			None				
Median storage veh)			110110			110110				
Jpstream signal (ft)			1164			311				
X, platoon unblocked	0.84	0.76	1104		0.76	UII				
C, conflicting volume	2687	660			1958					
C1, stage 1 conf vol	2001	000			1000					
C2, stage 2 conf vol										
Cu, unblocked vol	1159	0			1173					
s, single (s)	6.8	6.9			4.1					
C, 2 stage (s)	0.0	0.0			7.1					
(s)	3.5	3.3			2.2					
0 queue free %	83	97			89					
M capacity (veh/h)	140	828			452					
irection, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	SB 4	
olume Total	24	28	767	767	424	51	648	648	648	
olume Left	24	0	0	0	0	51	0	0	0	
olume Right	0	28	0	0	41	0	0	0	0	
SH	140	828	1700	1700	1700	452	1700	1700	1700	
olume to Capacity	0.17	0.03	0.45	0.45	0.25	0.11	0.38	0.38	0.38	
Queue Length 95th (ft)	15	3	0	0	0	9	0	0	0	
ontrol Delay (s)	35.9	9.5	0.0	0.0	0.0	14.0	0.0	0.0	0.0	
ane LOS	E	Α				В				
pproach Delay (s)	21.7		0.0			0.4				
pproach LOS	C									
tersection Summary										
verage Delay			0.5							
ntersection Capacity Utiliza	ation		49.1%	IC	U Level	of Service			Α	
Analysis Period (min)			15							
(22 × 35.9) + (26 ×9.	5) + (47 11	1)/3	585					
789.8	+ 247	+ 1	658/	3685						
	169	14.8	1368	5 =	0, 3	5 SE	2			

	•	1	†	<i>></i>	1	ţ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	7	71	ተተ _ጉ		ħ	ተተተ				
Traffic Volume (veh/h)	18	20	1922	22	23	1811				
Future Volume (Veh/h)	18	20	1922	22	23	1811				
Sign Control	Stop		Free			Free				
Grade	0%		0%			0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Hourly flow rate (vph)	20	22	2089	24	25	1968				
Pedestrians			2000							
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)										
Median type			None			None				
Median storage veh)			110110			110110				
Upstream signal (ft)			1151			323				
pX, platoon unblocked	0.81	0.75	1101		0.75					
vC, conflicting volume	2807	708			2113					
vC1, stage 1 conf vol	2001	700			2110					
vC2, stage 2 conf vol										
vCu, unblocked vol	1387	0			1307					
tC, single (s)	6.8	6.9			4.1					
tC, 2 stage (s)	0.0	0.0								
tF (s)	3.5	3.3			2.2					
p0 queue free %	80	97			94					
cM capacity (veh/h)	101	811			393					
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	SB 4	
Volume Total	20	22	836	836	442	25	656	656	656	
Volume Left	20	0	000	000	0	25	000	000	000	
	0	22	0	0	24	0	0	0	0	
Volume Right cSH	101	811	1700	1700	1700	393	1700	1700	1700	
	0.20	0.03	0.49	0.49	0.26	0.06	0.39	0.39	0.39	
Volume to Capacity	17	0.03	0.49	0.49	0.20	5	0.39	0.39	0.39	
Queue Length 95th (ft)	49.0	9.6	0.0	0.0	0.0	14.8	0.0	0.0	0.0	
Control Delay (s)		9.0 A	0.0	0.0	0.0	14.0 B	0.0	0.0	0.0	
Lane LOS	E 28.3	А	0.0			0.2				
Approach Delay (s) Approach LOS	20.3 D		0.0			0.2				
	D						Alan Ing			
Intersection Summary			0.4							
Average Delay	-alia-		0.4	10	111	of Comit			٨	
Intersection Capacity Utili	zation		47.6%	IC	U Level (of Service			Α	
Analysis Period (min)		, /-	15	10)1	201					
(18+49) + (Z) 882 +	B x 9.6)	+ (2	3217	18/	3816					
882 +	192+	34	0.4/3	8/6	U					
	1414.	4/3:	816 3	0.	7 52					

			*	2	2		\ \\ \\ \\ \	 >
		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	838	200		2	
AD 187 @ Ramp		O	Opposing Lefts	7:4/37	02/		TOTAL	
Location: MD NB I 270 Rc	+ 1861 - 284 - 284 - 284	Service Level B A B D D B F I I I I I I I I I I I I I I I I I I	Lane Volume (1)x(2)	:	30		* critical volume	LEVEL
Š	Evening Peak	Lane Use Factor 1.00 .53 .37	Lane Use Factor(2)	0.3	0.53		* critice	
(0)	↓ .	No. of Lanes 1 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 2	Volume(1)	1861	8,799/			
NA Total Traffic Volumes MN Date:	Indicate North by Arrow TION NB 1 270 Ramp Amp Amp Amp Amp Amp Amp Amp Amp Amp A	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	ment	NB C	MAB NO.		Remarks:	
	LANE CONFIGURATION MD MD MD MD Thittit Ra MD Thittit Turn Adjustments	77	Ø				1 1	
	CONF	igh and Volume	+ - υ	\vdash	7 7		0/ >	
Count Dat Conditions Design Yes Computed	MD 187	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999 1000+	Critical Lane Volume	968	2 20		637	
UMMARY		Opposir Right 0 20 20 80 80	Opposing Lefts	1,4641	200		TOTAL	P P
VEMENT SUM AND OF SERVICE		X + 2 10 4 10	1 N N N N N N N N N N N N N N N N N N N	396	29%		al volume	LEVEL
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE	65.6 13 130 150		Lane Use Factor(2)	0.3	0.53		* critical	
	H /320 H /976 R75		Volume(1)	1320	1916)		
5	Morning Ped	Phasing (@	Ø Movement	BN (MB WB		Remarks:	

Location: MD 187 @ Tuckerman La	Thou H 15/1/2/8 1/	Service Critical Lane Level Vol. Tot. A = 1000 or Less B = 1000 to 1150 C = 1150 to 1300 D = 1300 to 1450 E = 1450 to 1600 F = Greater than 1600	Lane Opposing Critical Volume (1)x(2) Lefts Volume
	Evening Pec	No. of Use Lanes Factor 1 = 1.00 2 = .53 3 = .37 4 = .30 5 = .25	Lane Use Volume(1) Factor(2)
Count Date: NA Conditions/ Total Traffic Volumes Design Year: MN Computed By: MN Date:	Indicate North by Arrow LANE CONFIGURATION Tuckerman La	A posing Through and Passenger Car Right—Turn Volume Equivalent 1.1 200 to 199 2.0 600 to 799 3.0 800 to 999 4.0 1000+ 5.0	Critical * Movement Volume
	Tuckerman MD 187 Feft	Opposing Throu Key Right—Turn V 1 0 to 199 2 200 to 599 3 600 to 799 4 800 to 999 5 1000+	Lane Opposing Crit Volume Opposing La (1)x(2) Lefts Vol
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE	306 + 358 - 205	Tucken man ha	Lane Use Volume(1) Factor(2) (1
	Morning Market M	Phasing © Split & cou	Movement Vol
¥		ĬĘ	ø

//C

TOTAL

* critical volume

TOTAL 1642 V/C Remarks:

* critical volume

Remarks:

LEVEL OF SERVICE

LEVEL OF SERVICE

)

202

202

9.0

337

WB

37%

0.53

8121 1151 921+461

SB

۲ >

838 889

861 86

590 049

0.37 0.37

1594

NB

570

707

0.37 0.37

NB

349.

205 80

١

348

0.53 9.0

WB

12954136 681+685 623

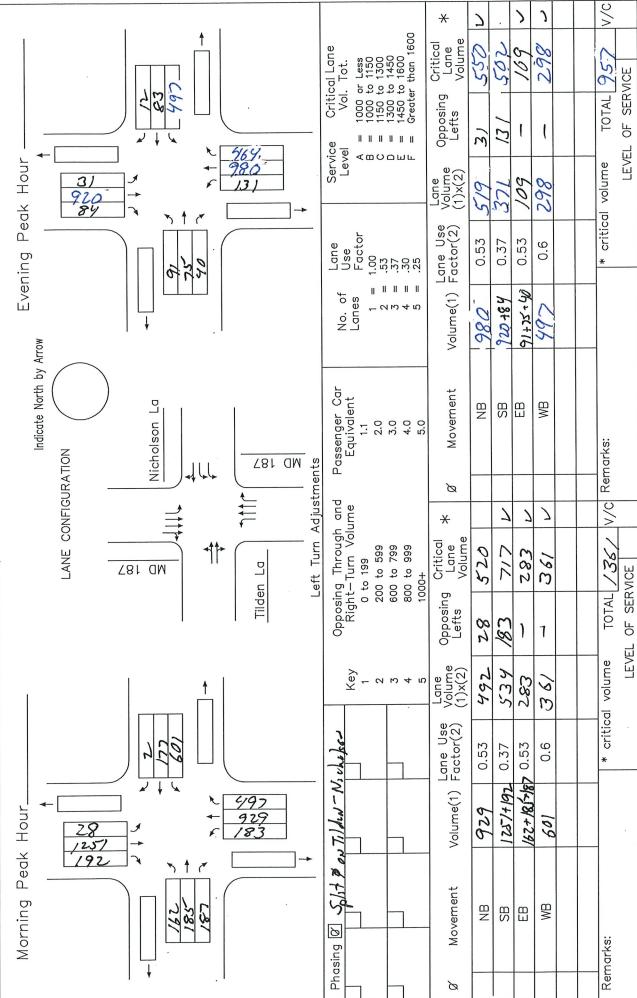
SB

*

TURNING	
	1

RNING MOVEMENT SUMMARY
AND
LEVEL OF SERVICE

Count Date: NA Conditions/ Total Traffic Volumes Design Year:


Location: MD 187 © Poindexter La—Edson La

. T			*	7		>		\top	\/C
		Critical Lane Vol. Tot. 000 or Less 000 to 1150 150 to 1300 300 to 1450 450 to 1600 reater than 1600	Critical Lane Volume	30%	\top		213		1025 MCE
		O	Opposing Lefts	92	hh	207	9		5 심
	Y 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Service Level A B A B C C C C C C C C C C C C C C C C	Lane Volume (1)x(2)	778	267	14	207		* critical volume LEVEL
	Evening Pe	Lane Use Factor 1.00 .53 .37 .30	Lane Use Factor(2)	0.37	0.37	1.0	1.0		* critic
	 	No. of Lanes 1 = 2 3 = 1 = 5	Volume(1)	1913-190	1523 +9	819	207		
Date:	Indicate North by Arrow ATION Edson La Edson La ants	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	NB N	SB	EB	WB		arks:
By: MN	CONFIGURATION Edso Edso Adjustments		Ø						Remarks:
	CONFIG THL	lh and olume	*		7	7		_	V/C
Computed		Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999 1000+	Critical Lane Volume	678	772	5/	158		TAL 992 SERVICE
띮	Poindexter Left -	Opposir Right 0 20 80 80	Opposing Lefts	50	29	150	00		DT PP
LEVEL OF SERVICE	 ↑	X + 2 10 14 10	Lane Volume (1)x(2)	878	7 73	20	150		* critical volume LEVEL
LEVEL (Lane Use Factor(2)	0.37	0.37	1.0	1.0		* critico
1	19/6 19/5 1972 35 29		Volume(1) F	1551+146	1972+35	2415	150		
	Morning Peak Hour 1925	Phasing @	Movement	NB	SB	EB	WB		ırks:
		Phasi	Ø						Remarks:

TURNING	
	1
	1

RNING MOVEMENT SUMMARY
AND
LEVEL OF SERVICE

Location: MD 187 @ Tilden La-Nicholson La

	•		*	7	7	
La @		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	32	2/20)
	25	B H H H H H H	Opposing Lefts)	200	7
Location: Tuckerman Gloxinia Dr	1 1 1 0 F 10	Service Level B A B D D D D D D D D D D D D D D D D D	Lane Volume (1)x(2)	38	19	5/5
oğ	Evening Peak	Lane Use Factor 1.00 .53 .37	Lane Use Factor(2)	1.0	1.0	;
		No. of Lanes 1 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 1 = 2 = 2	Volume(1)	11*+25	9.74	305750
NA Total Traffic Volumes MN Date:	ATION Tuckerman La Tuckerman La Sining Si	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	a _N	SB	נ
	GURA T	77	Ø		_	
Date: ons/ Year ted E	FNOS → PA	Jh and olume	*		7	-
Count Date: Conditions/ Design Year: Computed B	LANE CONFIGURATION CONTINUE Trucke Trucke Trucke Trucke	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999 1000+	Critical Lane Volume	99	19/0	707
UMMARY	Tuckerman Tuckerman I eff	Opposi Righ 0 2 2 8	Opposing Lefts	11	59	7
VEMENT SUM AND OF SERVICE	† † , , , , , , , , , , , , , , , , , ,	X - 0 10 4 10	128E	28	\(\sigma\)	405
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE			Lane Use Factor(2)	1.0	1.0	5.5
TUR	1 1/1 1/2 1/3 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4		Volume(1)	11-6 3,59	24.2+21	729 430
	Morning Peak Hour	Phasing @	Ø Movement	a N	SB	LO

/C

TOTAL 35.5

* critical volume

TOTAL 572 V/C Remarks:

* critical volume

Remarks:

LEVEL OF SERVICE

LEVEL OF SERVICE

304

29

275

0.53

8+/15

WB

26h

616

0.53

783+7

₩

			* 7	7		
		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	1 1	525/		<u>n</u>
187 @		######################################	Opposing Lefts	()		TOTAL 96
Location: MD Main Access	79 J F 1875	Service Level B B B B B B B B B B B B B B B B B B B	Volume (1)x(2)	628 145		critical volume
	Evening Peak	Lane Use Factor 1.00 .53 .37 .30	Factor(2)	0.37		* critic
w ii	 .	No. of Lanes 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		145		
tal Traffic Volumes	ATION Agin Access Main Access Main Access	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	SB WB		Remarks:
e: NA Total Inc. By: MN	CONFIGURATION Mair		8			1 1
Date: ons/ Year ted E	SONF!	ih and slume	* 7	7		0//
Count Date: _ Conditions/ Design Year: Computed By	LANE CONFIGURATION MD MD Main Left Turn Adiustments		Lane Volume	637	Avadetic to the control of the contr	1187 VICE
JMMARY CE		Opposition (Composition Composition osing Lefts	1)		TOTAL 1/18	
VEMENT SUM AND OF SERVICE		X X 2 1 2 2 2 5 5 4 4 4 5 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9	Volume (1)x(2) \$6.7	637		critical volume
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE			Lane Use Volume(1) Factor(2) /558+232 0.37	0.37		* critico
	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		Volume(1)	1727		
	Morning Peak	Phasing @	Ø Movement NB	SB		Remarks:

			*	7	>		\/C
		Critical Lane Vol. Tot. 1000 or Less 1000 to 1150 1150 to 1300 1300 to 1450 1450 to 1600 Greater than 1600	Critical Lane Volume	741	670	0 /	0
187 @	3 60 1		Opposing Lefts	23	1	l	TOTAL 76
Location: MD Bus Loop	D	Service Level DOCBBA FFF	Lane Volume (1)x(2)	611	670	0/	critical volume
	Evening Peak	Lane Use Factor 1.00 .53 .37 .30	Lane Use Factor(2)	0.37	0.37	2:	* critico
(n) %	 	No. of Lanes 2 = = 5 = = 5 = = 5	Volume(1)	724 226/	//&/	0	
NA Total Traffic Volumes MN Date:	Indicate North by Arrow ATION Bus Loop MD 187	Passenger Car Equivalent 1.1 2.0 3.0 4.0 5.0	Movement	NB	SB		Remarks:
' ,.	CONFIGURATIC Bus		Ø				
Date: ons/ Year ted E	DONEL TO SON FILE SO	ih an Slume	X	7	7		 N/C
Count Date: _ Conditions/ Design Year: Computed By	LANE CONFIGURATION MD MD MD MD MD MD MD MD MD M	Opposing Through and Right—Turn Volume 0 to 199 200 to 599 600 to 799 800 to 999	Critical Lane Volume	714	299	0	736 VICE .
JMMARY SE		Opposir Right 0 20 20 80 80	Opposing Lefts	47] 1		TOTAL 73
VEMENT SUM AND OF SERVICE		X + 2 & 4 & 0	Lane Volume (1)×(2)	667	299	1	critical volume
TURNING MOVEMENT SUMMARY AND LEVEL OF SERVICE			Lane Use Factor(2)	0.37	0.37	0.	* critico
TUR	38 - /764 - /788 - /764		Volume(1)	85+1911	788	0	
	Morning A 1/764 A 1/788 A 1/788 A 1/764 A 1/788 A 1/764 A 1/	Phasing @	Ø Movement	an N	S ×		Remarks:

APPENDIX H SimTraffic WORKSHEET

Intersection: 24: MD 187 & Main Access

Movement	WB	WB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	L	R	Т	T	TR	L	Т	Т	Т	
Maximum Queue (ft)	136	70	250	253	249	249	143	278	319	
Average Queue (ft)	82	43	173	178	187	217	92	179	221	
95th Queue (ft)	139	70	317	326	311	272	167	295	342	
Link Distance (ft)	121	121	244	244	244		636	636	636	
Upstream Blk Time (%)	1		2	4	7					
Queuing Penalty (veh)	0		11	21	42					
Storage Bay Dist (ft)						500				
Storage Blk Time (%)										
Queuing Penalty (veh)										

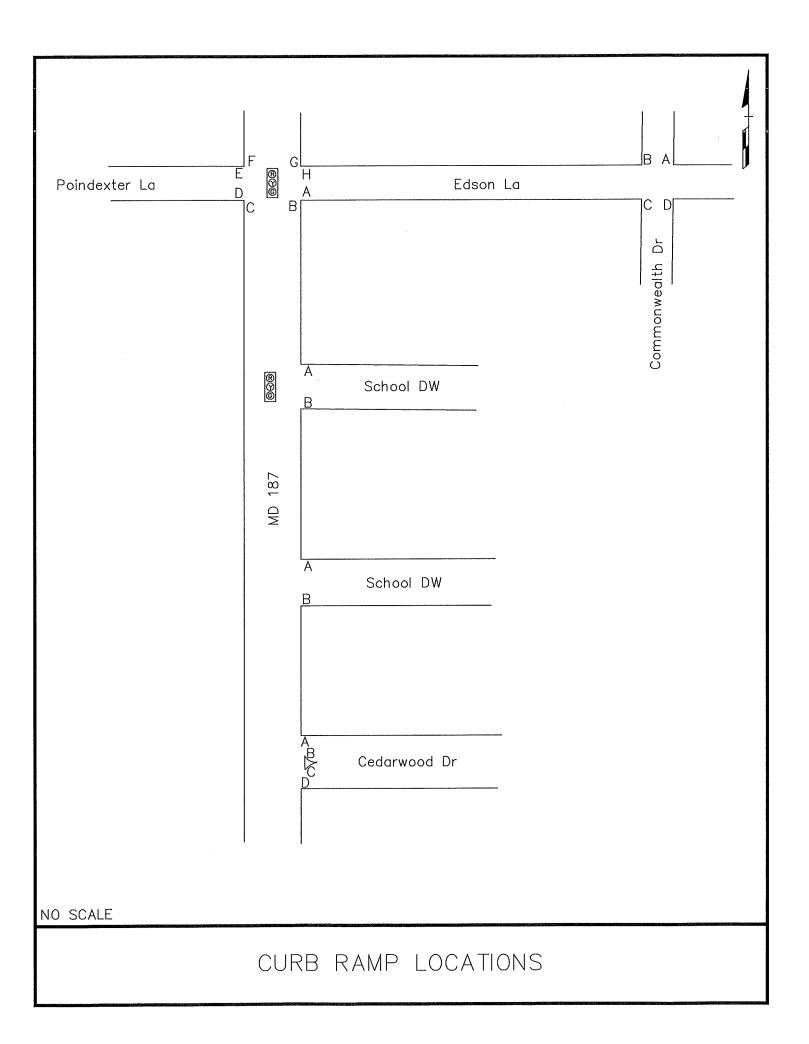
APPENDIX I CURB RAMP SURVEY SHEETS

Additional related information can be found in the Department of Justice/Department of Transportation joint 2013 publication and 2015 publication.

Cu	ırb Ramps		Co	nstruct	tion/Al	teration	ı Date	(circle (one):	Befo	ore 1/26/	92	Ai	fter 1/26/	92
Facility N	Name/Address:				,				Date:	7/	23/1	9			
	: MO 187 @ CEDARU	Voda	T 1)	٠					Surve		MN				
Record v	our measurements in the blanks when they t the choices are "Y" and "n/a," circle "n/a" (ı	are pro	vided. [Do not c	ircle a re ed "N" s	esponse ignifies a	for a q	uestion y	ou are	directed	l to skip.	. If your	answer	to a que	stion
Describe	e each curb ramp's location: Ste S	C F 1	7.		С	urb Ram	ıp D:								
Curb Ra					С	urb Ram	ıp E:								
Curb Ra	mp B:		111200100		С	urb Ram	ηρ F:								100000000
Curb Ra	mp C:				С	urb Ram	ıp G:								
Refer to #	Curb Ramp (CR) Questions	Curb Ramp	A	Curb Ramp	В	Curb Ramp	С	Curb Ramp	D	Curb Ramp	E	Curb Ramp	F	Curb Ramp	G
	Is ramp of CR at least 36" wide	7)	N	(v)	N	(V)	N	(r)	N	Υ	N	Υ	N	Υ	N
1	(not including flared sides)?	" 4	8	" 4	18	" 4	' ?	" 8	4	"		11		"	
	Does CR have a running slope of 8.33%	<u>?</u>)	N	M	N	19	N	10	N	Υ	N	Υ	N	Υ	N
2	or less?	% '/ .	3	% 0	کر،	% 0	.5	% 5	.6	%		%		%	
	Does CR have a cross slope of 2% or	\widehat{Y}	N	\mathfrak{D}	N	1	N	\bigcirc	N	Υ	Ň	Υ	N	Υ	N
3	less?	% /.	8	% /.	0		0	% /.	7_	%		%		%	T
4	Does CR have a gutter slope of 5% or		N	Ŷ	N	0	N	Ø	N	Υ	N	Υ	N	Υ	N
4	less?	% 3	- O	% 2	.0	% /.	8	% 2,	.5	%		%		%	
5	Are transitions on and off CR flush and (free of abrupt level changes?	9	N (Ŷ	N	(P)	N	(D)	N	Υ	N	Υ	N	Υ	N
	Record the height of any level changes.	"		11		11		"		11		lu lu		"	
6	Does CR have detectable warnings? (D	N	Ø	N	Ø	N ((y)	N	Υ	N	Υ	N	Υ	N
7	Can CR be blocked by legally parked cars?	Υ	N)	Υ (B	Υ	R)	Υ	Ŋ	Υ	N	Υ	N	Υ	N
	Is the sidewalk at the "top" of CR at least	9	N (P)	N	(P)	N	(P)	N	Υ	N	Υ	N	Υ	N
8	36" wide?	17		U		"		"		11	-	11	·	11	
9	Does CR have flared sides? If yes, answer one of the next two questions. If not, skip to question 10.	Ÿ	n/a (Ď	n/a	D	n/a	Ý	n/a	Υ	n/a	Υ	n/a	Υ	n/a
	If the sidewalk at the "top" of CR is 48"	Image: Control of the control of the	N (M	N	19	N	\mathfrak{P}	N	Υ	N	Υ	N	Υ	N
9.a	wide or more, is the slope of the flared sides 10% or less?	% /.	3	%/.	0	% <i>j</i> .	0	%0	.9	%		%		%	
	If the sidewalk at the "top" of CR is less	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
9.b	than 48" wide, is the slope of the flared sides 8.33% or less?	%		%		%	·	%		%		%		%	
10	If no flared sides, is there an obstruction or grass on each side of CR that discourages pedestrians from traveling across ramp? If the CR has flared sides, skip this question.	Υ	N	Υ	N	Υ	N	Y	N	Y	N	Υ	N	Y	N
11	If CR is built-up to the curb, is it outside the path of cars? If CR is not built-up to curb, skip this question.	Ŋ	N	9	N	(F)	N	ß	N	Υ	N	Y	N	Y	N
Answer	the last two questions only if the CR is lo	1	T		T	T	т	1	T	1	т	T.,	Т	T.	r
12	Is ramp of CR contained in markings?	Υ	N	Υ	N	Υ	N	Y	N	Υ	N	Υ	N	Y	N
13	If corner-type CR, is bottom landing at least 48" long and contained in crosswalk?	Υ	N	Υ	N	Y	N	Y	N	Υ	N	Υ	N	Υ	N
	If not comer-type CR, skip this question.	"		"		<u>l"</u>		<u> </u> "	. va	"		<u> </u> "		<u>l"</u>	

Additional related information can be found in the Department of Justice/Department of Transportation joint 2013 publication and 2015 publication.

С	urb Ramps		C	onstruc	tion/A	lteratio	n Date	(circle	one):	Bef	ore 1/26/	92	A	fter 1/26	/92
Facility	Name/Address:								Date	: 7/	23/19	, 			
	MD 187 & School DA	W. U	105	(5	TOP)			Surv	eyors:					
Record	your measurements in the blanks when they at the choices are "Y" and "n/a," circle "n/a" (i	are pro	ovided.	Do not o	ircle a	respons	e for a c a violat	question ion).	you are	directe	d to skip	. If your	answer	to a qu	∍stion
Describ	e each curb ramp's location: しょんしょん	4.70	cH		C	Curb Ra	mp D:								
Curb Ra	amp A:				C	Curb Ra	mp E:						***************************************		
Curb Ra		<u></u>				Curb Ra									
Curb Ra	amp C:				C	Curb Ra	mp G:								
Refer to #	Curb Ramp (CR) Questions	Curb Ramp	Α	Curb Ramp	В	Curb Ram		Curb Ram	D D	Curb Ramp	Ε	Curb Ramp	7	Curb Ramp	G
4	Is ramp of CR at least 36" wide	W)	N	M)	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
1	(not including flared sides)?	" 48	3	-	8	"		11		11		17		"	
2	Does CR have a running slope of 8.33%	Ø	N	03	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
	or less?	% 4	· 8'		٠3	%		%		%		%	·	%	-
3	Does CR have a cross slope of 2% or less?	<u> </u>	N	D D	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
3	lessr	% <i>D</i>	-8	% /	1	%		%		%		%		%	
4	Does CR have a gutter slope of 5% or less?	<u> </u>	N	M	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
7	1622 (% Z	.0	% /	<u>;3</u>	<u>%</u>	-T	%		%	1	%		%	T
5	Are transitions on and off CR flush and free of abrupt level changes?	0	N	Ø_	N	Y	N	Υ	N	Υ	N	Υ	N	Υ	N
	Record the height of any level changes.	"		n		"		"		"		l"		"	
6	Does CR have detectable warnings?	পি	N	M	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
7	Can CR be blocked by legally parked cars?	Υ	(P)	Υ		Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
	Is the sidewalk at the "top" of CR at least	\bigcirc	N	B	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
8	36" wide?	11		"		11		11		"		"		"	
9	Does CR have flared sides? If yes, answer one of the next two questions. If not, skip to question 10.	(S)	n/a	85	n/a	Y	n/a	Υ	n/a	Y	n/a	Y	n/a	Y	n/a
	If the sidewalk at the "top" of CR is 48"	1	N	Ø	N	Υ	N	Υ	N	Υ	N	Y	N	Υ	N
9.a	wide or more, is the slope of the flared sides 10% or less?	% 2	.6	% 6	4	%		%		%		%		%	
	If the sidewalk at the "top" of CR is less	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Y.	N	Υ	N
9.b	than 48" wide, is the slope of the flared sides 8.33% or less?	%		%		%		%		%		%		%	
10	If no flared sides, is there an obstruction or grass on each side of CR that discourages pedestrians from traveling across ramp? If the CR has flared sides, skip this question.	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Y	N	Υ	N
11	question.	P	N	&	N	Υ	N	Y	N	Y	N	Υ	N	Υ	N
Answe	the last two questions only if the CR is lo	TA	·					1	1	1	T	T.,	T	1	т
12	is ramp of CR contained in markings?	(<u>Y</u>)	N	\bigcirc	N	Υ	N	Y	N	Y	N	Υ	N	Y	N
13	If corner-type CR, is bottom landing at least 48" long and contained in crosswalk?		N	<u> </u>	N	Υ	N	Y	N	Υ	N	Y	N	Υ	N
	If not corner-type CR, skip this question.	"		u u		11				<u> </u>		<u> </u>		<u> </u>	


Cı	irb Ramps		Co	nstruc	tion/A	lteratio	n Date	(circle	one):	Befo	ore 1/26/	92	A	fter 1/26	/92
Facility I	Name/Address: : MD 187 & Schaal L	NIVE	(WA)	C .	SigN	nl)	3149 20100		Date:	<i>בור</i> eyors: ,	3/19 NN				
Record y	our measurements in the blanks when they t the choices are "Y" and "n/a," circle "n/a" (i	are pro not app	ovided. I licable).	Do not o (A circl	circle a r	espons	e for a q a violati	uestion on).	you are	directed	l to skip.	. If your	answer	to a que	estion
Describe	e each curb ramp's location: SEE SK	KTC.	W		C	urb Rai	mp D:								
Curb Ra		<u> </u>	<u> </u>	-	C	urb Rai	np E:								
Curb Ra	mp B:				C	urb Ra	mp F:				(Accessed to 1977)				
Curb Ra	mp C:				C	urb Ra	np G:								
Refer to#	Curb Ramp (CR) Questions	Curb Ramp	A	Curb Ramp	ь В	Curb Ram		Curb Ramp	D	Curb Ramp	E	Curb Ramp	F	Curb Ramp	G
_	Is ramp of CR at least 36" wide	$\langle \gamma \rangle$	N	M	N	Υ	N	Υ	N	Υ	N	Y	N	Υ	N
1	(not including flared sides)?	. 4	8		18	"		"		"		11		"	
	Does CR have a running slope of 8.33%	0	N	13	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
2	or less?	% 4	.9	% 6	.7	%		%		%		%		%	,
2	Does CR have a cross slope of 2% or	\mathfrak{P}	N	9	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
3	less?	% <i>J</i> .	/	% <i>]</i> .	3	%		%		%	· · · · · · · · · · · · · · · · · · ·	%		%	,
4	Does CR have a gutter slope of 5% or	(S)	N	0	N	Υ	N	Υ	N	Υ	N	Υ	N	Y	N
4	less?	% 2	. 8'	% 3	·/	%		%		%		%	T	%	
5	Are transitions on and off CR flush and free of abrupt level changes?	0	N	0	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
	Record the height of any level changes.	11]"		,,		n		ii	· · · · · · · · · · · · · · · · · · ·	"		<u> </u>	T
6	Does CR have detectable warnings?	9	N	12	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
7	Can CR be blocked by legally parked cars?	Υ	(R)	Υ	$ \stackrel{\text{(N)}}{=} $	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
8	Is the sidewalk at the "top" of CR at least 36" wide?	0_	N	<u>19</u>	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
0	36 wide?	"		"		11		<u> "</u>	·	"		"	·	"	
9	Does CR have flared sides? If yes, answer one of the next two questions. If not, skip to question 10.	(i)	n/a		n/a	Y	n/a	Y	n/a	Υ	n/a	Y	n/a	Υ	n/a
_	If the sidewalk at the "top" of CR is 48"	<u> </u>	N	0	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
9.a	wide or more, is the slope of the flared sides 10% or less?	% Z	.2	% 4	1.4	%		%		%		%		%	
	If the sidewalk at the "top" of CR is less	Υ	N	Υ	N	Υ	N	Y	N	Υ	N	Υ	N	Υ	N
9.b	than 48" wide, is the slope of the flared sides 8.33% or less?	%		%		%		%		%		%		%	
10	If no flared sides, is there an obstruction or grass on each side of CR that discourages pedestrians from traveling across ramp? If the CR has flared sides, skip this question.	Y	N	Υ	N	Y	N	Υ	N	Y	N	Υ	N	Υ	N
11	If CR is built-up to the curb, is it outside the path of cars? If CR is not built-up to curb, skip this question.	(Y)	N	B	N	Υ	N	Υ	N	Y	N	Υ	N	Y	N
Answer	the last two questions only if the CR is I		T	177					т	Τ	T	T	T	1	т
12	Is ramp of CR contained in markings?	(<u>v</u>)	N	(Y)	N	Y	N	Y	N	Υ	N	Y	N	Y	N
13	If corner-type CR, is bottom landing at least 48" long and contained in crosswalk?	0	N	0	N	Y	N	Y	N	Y	N	Y	N	Υ	N
	If not corner-type CR, skip this question.	"		<u></u>		"		<u> </u> "		<u></u>		<u>l"</u>	···	<u> </u>	

Additional related information can be found in the Department of Justice/Department of Transportation joint 2013 publication and 2015 publication.

	Name/Address:								Date	7/8	3/19			4	
ocation	: MO 187 @ Edson LA.	- Po1.	NdE	-Jen	- 4	9			Surv	eyors:	m	V			
s no, bu	your measurements in the blanks when they it the choices are "Y" and "n/a," circle "n/a" (not app	licable)	Do not o . (A circl	ed "N"	' signifies	a viola	question tion).	you are	directe	d to skip	. If you	answe	r to a qu	estion
	e each curb ramp's location: SEE SKE	TCI	4	P.W		Curb Rai						480	·		
	amp A:					Curb Rai					·	· · · · · · · · · · · · · · · · · · ·			
	amp B:			·····		Curb Rai				***************************************			·		
uib Ke	amp C:				1	Out Ital	np G.								
efer #	Curb Ramp (CR) Questions	Curb Ramp	Α	Curb Ramp	В	Curb Ramp	o C	Curb Ram		Curb Ramp	E	Curb Ramp	F	Curb Ram	
	is ramp of CR at least 36" wide	\odot	N	\bigcirc	N	(N	<u>(v)</u>	N	B	N	ツ	N	ح	N
	(not including flared sides)?	" <i>86</i>	•	" 7'	2	" 9	0		12		32	" 8	1	. 8	4
	Does CR have a running slope of 8.33%	Ø	N	Ø	N	89	N	\otimes	N	\odot	N	\mathcal{O}	N	Ø	N
	or less?	% 0	6	% 0	9	% 0	2.2	% 6	2.4	% /	1		0		7.5
	Does CR have a cross slope of 2% or	80	N	10	N	8	N	Ø	Ň	Ø	N	Ø	N	0	N
	less?	%0.	6	% 0	2.5		9. 2		0	% 0	17	% 0	٠, ح	% 6	7.5
-	Does CR have a gutter slope of 5% or	Ø	N	0	N	0	N	B	N	Ø	N	B	N	9	N
	less?	% Z	.5	% /	0	% 4	2.8	% /	2_	% 3	· /	% 0	,9	% /.	6
		(Y)	N	(A)	N	B	N	\bigcirc	N	3	N	\odot	N	B	N
	Are transitions on and off CR flush and free of abrupt level changes? Record the height of any level changes.		14		<u>l</u>		<u> </u>		1''	-	<u> </u>	<u>.</u>	<u> </u> "		Γ_
	Does CR have detectable warnings?	W7	T.,	(v)	N	6	N	6	N	Ø	N	100	N	B	N
		-	N					- F				\vdash		 	
	Can CR be blocked by legally parked cars?	Y	(N)	Υ	(N)	Y	N)	Υ		Y	P	Υ	0	Υ	M
	is the sidewalk at the "top" of CR at least	②	N	(D)	N	(A)	N	8	N	0	N	8	N	0	N
	36" wide?	11		"		"		"		"		"		"	
	Does CR have flared sides? If yes, answer one of the next two questions. If not, skip to question 10.	$\widehat{\mathbf{y}}$	n/a	Ď	n/a	Υ	n/a	Υ	n/a	Y	n/a)	Υ	n/a	Y	n/a
	If the sidewalk at the "top" of CR is 48"	令人	N	0	N	(S)	N	Y	N	ĺΥ	N	(Y)	N	0	N
а	wide or more, is the slope of the flared sides 10% or less?	% 3	.7	% Z	. 1	% /.	8	%		% /		% 4.	3	% 3.	. 7
	If the sidewalk at the "top" of CR is less	Υ	ĺΝ	Y	N	Y	N	Υ	N	Υ	N	Υ	N	Υ	N
b	than 48" wide, is the slope of the flared sides 8,33% or less?	%	<u> </u>	%	1	%		%		%	1	%		%	
)	If no flared sides, is there an obstruction or grass on each side of CR that discourages pedestrians from traveling across ramp? If the CR has flared sides, skip this question.	Y	N	Y	N	Y	N	Ŷ	N	9	N	Υ	N	Υ	N
1	question.	D	N	0	N	(P)	N	(V)	N	œ.	N	(Y)	N	Ø	N
nswer	the last two questions only if the CR is lo		_		ossing	4		7/2	,	1/20-		~	·	7	
2	Is ramp of CR contained in markings?	<u> </u>	N	<u> </u>	N	(<u>y</u>)	N	\bigcirc	N	0	N	\bigcirc	N	(A)	N
3	If corner-type CR, is bottom landing at least 48" long and contained in crosswalk?	Ŷ)	N	\bigcirc	N	(y)	N	$\langle b \rangle$	N	\bigcirc	N ((§	N	<u>(1)</u>	N
	crosswaik? If not comer-type CR, skip this question.	"		11		"		ıı.		"		"		"	

	ated information can be found in the Departmen					lteratio					ore 1/26		A	fter 1/26	/92
Facility	Name/Address:								_	7/2	_				
Locatio	" Edson LA @ comm	ONW	201t	0~	•				Surve	eyors:	MN				
Record is no, b	your measurements in the blanks when the ut the choices are "Y" and "n/a," circle "n/a" (y are pro not app	ovided. I licable).	Do not c	ircle a ed "N" s	response signifies	e for a q a violati	uestion	you are	directe	d to skip	. If your	answer	to a que	estion
Describ	e each curb ramp's location: SEE S	YE.	TCH			Curb Ran	np D:								
Curb R				**	C	Curb Ran	np E:								
Curb R	атр В:				C	Curb Ran	np F:							AND THE RESERVE	
Curb Ra	amp C:					Curb Ran	np G:								
Refer to #	Curb Ramp (CR) Questions	Curb Ramp	A	Curb Ramp	В	Curb Ramp	С	Curb Ramp	D	Curb Ramp	E	Curb Ramp	F	Curb Ramp	G
_	Is ramp of CR at least 36" wide	$\overline{\mathbb{V}}$	N	Ø	N	Ø	N	Ø	N	Υ	N .	Υ	N	Υ	N
1	(not including flared sides)?	" 49	3	" 4	7	" 4	8	" 4	8	"		"		11	
2	Does CR have a running slope of 8.33%	Ø	N	B	N	\triangleright	N	B	N	Y	N	Υ	N	Υ	N
2	or less?	%0	3	% 7.	5		ري		4	%		%	(constitution)	%	·
3	Does CR have a cross slope of 2% or less?	Υ	趔	0	N	<u>(S</u>	N ,	<u>(P)</u>	N	Υ	N	Υ	N	Υ	N
•	1655 (% 4.	3		5		し	-	12	%		%		%	
4	Does CR have a gutter slope of 5% or less?	<u> </u>	N	(C)	N	\mathfrak{S}	Ŋ	(y)	N	Υ	N	Υ	N	Y	N
	1000:	% 2.	6	% 3	**	% 4	4	% /	<u>ر</u>	%		%	T	%	_
5	Are transitions on and off CR flush and free of abrupt level changes?	0	N	0	N	<u>Ø</u>	N	<u>B</u>	N	Υ	N	Υ	N	Y	N
	Record the height of any level changes.	"		11		111		 "		n		n n		11	
6	Does CR have detectable warnings?	Υ	(N)	Y	(N)	Υ	N)	Υ	N	Y	N	Υ	N	Y	N
7	Can CR be blocked by legally parked cars?	Υ	P	Υ	N	Υ	(1)	Υ	(2)	Υ	N	Υ	N	Y	N
	is the sidewalk at the "top" of CR at least	D)	N	(A)	N	D	N	B	N	Υ	N	Υ	N	Υ	N
8	36" wide?	"		11		1"		"		11		11		"	
9	Does CR have flared sides? If yes, answer one of the next two questions, If not, skip to question 10.	0	n/a	0	n/a	(E)	n/a	8	n/a	Υ	n/a	Y	n/a	Υ	n/a
	If the sidewalk at the "top" of CR is 48"	$\langle \gamma \rangle$	N	(Y)	N	R)	N	(7)	N	Υ	N	Y	N	Υ	N
9.a	wide or more, is the slope of the flared sides 10% or less?	% 5	.6	% 5	.3	% 6	4	% 3	.0	%		%		%	<u></u>
	If the sidewalk at the "top" of CR is less	Υ	N	Υ	N	Υ	N	Y	N	Υ	N	Υ	N	Υ	N
9.b	than 48" wide, is the slope of the flared sides 8,33% or less?	%	<u> </u>	%	<u> </u>	%	<u> </u>	%	<u></u>	%	1	%		%	.
10	If no flared sides, is there an obstruction or grass on each side of CR that discourages pedestrians from traveling across ramp? If the CR has flared sides, skip this question.	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
11	If CR is built-up to the curb, is it outside the path of cars? If CR is not built-up to curb, skip this question.	9	N	Ý)	N		N	Ø	N	Υ	N	Υ	N	Y	N
Answei	the last two questions only if the CR is I	ocated	at a ma	rked cr	ossing	:				_					
12	Is ramp of CR contained in markings?	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N
13	If corner-type CR, is bottom landing at least 48" long and contained in crosswalk?	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Y	N
	If not comer-type CR, skip this question.	"		er .		"		"		<u> </u>		<u>l"</u>		<u> </u>	

Comments:	

APPENDIX J CROSSWALK EVALUATIONS

Approach	EB	WB	NB	SB	
Crosswalk Length (ft)	67.0	64.3	108.8	83.2	
Crosswalk Width (ft)	12.0	12.0	12.0	12.0	
Total Number of Lanes Crossed	3	5	8	6	
Number of Right-Turn Islands	0	0	0	0	
Type of Control	None	None	None	None	1
Corresponding Signal Phase	6	2	4	8	
Effective Walk Time (s)	0.0	0.0	0.0	0.0	
Right Corner Size A (ft)	9.0	9.0	9.0	9.0	
Right Corner Size B (ft)	9.0	9.0	9.0	9.0	
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0	
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00	
Ped. Left-Right Flow Rate (p/h)	0	0	0	0	
Ped. Right-Left Flow Rate (p/h)	0	0	0	0	
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0	
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0	
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	Û	
Veh. RTOR Flow in Walk (v/h)	0	0	0	0	
85th percentile speed (mph)	30	30	30	30	
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0	
Right Corner Quality of Service	-	-	-	-	
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0	
Crosswalk Circulation Code	-	-	-	-	
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0	
Pedestrian Compliance Code	Poor	Poor	Poor	Poor	
Pedestrian Crosswalk Score	2.38	2.64	3.25	2.93	
Pedestrian Crosswalk LOS	В	В	С	С	

Approach	EB	WB	NB	SB	
Crosswalk Length (ft)	67.0	64.3	108.8	83.2	
Crosswalk Width (ft)	12.0	12.0	12.0	12.0	
Total Number of Lanes Crossed	3	5	8	6	
Number of Right-Turn Islands	0	0	0	0	
Type of Control	None	None	None	None	
Corresponding Signal Phase	6	2	4	8	
Effective Walk Time (s)	0.0	0.0	0.0	0.0	
Right Corner Size A (ft)	9.0	9.0	9.0	9.0	
Right Corner Size B (ft)	9.0	9.0	9.0	9.0	
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0	
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00	
Ped. Left-Right Flow Rate (p/h)	0	0	0	0	
Ped. Right-Left Flow Rate (p/h)	0	0	0	0	
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0	
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0	
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0	
Veh. RTOR Flow in Walk (v/h)	0	0	0	0	
85th percentile speed (mph)	30	30	30	30	
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0	
Right Corner Quality of Service		-	-	-	
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0	
Crosswalk Circulation Code	-	-	-	-	
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0	
Pedestrian Compliance Code	Poor	Poor	Poor	Poor	
Pedestrian Crosswalk Score	2.16	2.57	3.14	2.84	
Pedestrian Crosswalk LOS	В	В	С	С	

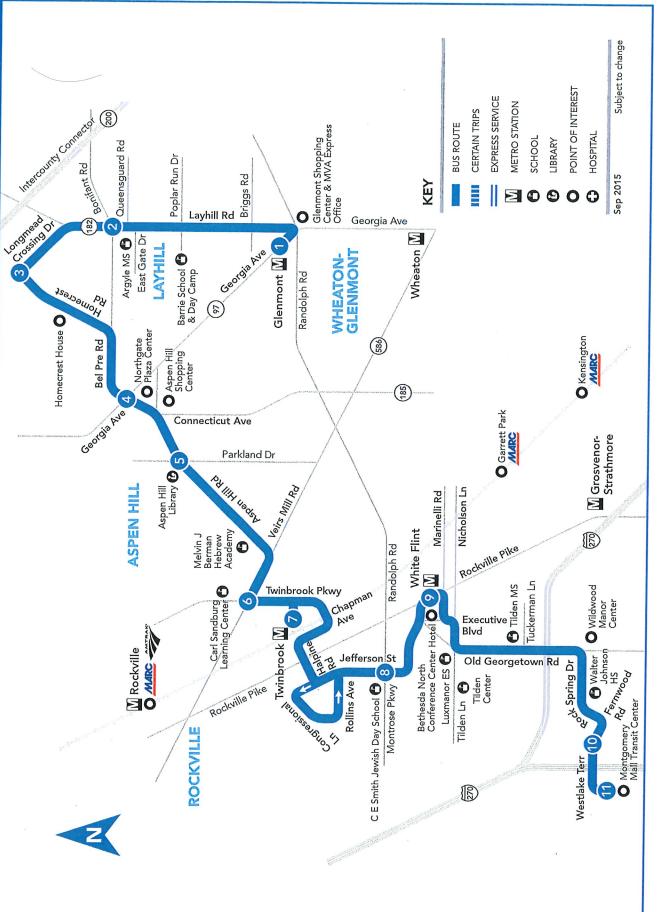
		ALCOHOLOGICA COMPANION CONTRA	mourne departue o esso.	Mary Control of the Control
Approach	EB	WB	NB	SB
Crosswalk Length (ft)	34.6	39.2	85.3	85.1
Crosswalk Width (ft)	12.0	12.0	12.0	12.0
Total Number of Lanes Crossed	2	3	7	7
Number of Right-Turn Islands	0	0	0	0
Type of Control	None	None	None	None
Corresponding Signal Phase	6	2	4	0
Effective Walk Time (s)	0.0	0.0	0.0	0.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	9.0	9.0	9.0	9.0
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00
Ped. Left-Right Flow Rate (p/h)	0	0	0	Ū
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	0	0	0	0
85th percentile speed (mph)	30	30	30	30
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0
Right Corner Quality of Service	-	-	-	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	1.79	2.10	3.22	3.18
Pedestrian Crosswalk LOS	Α	В	С	С
, caostian oroconan zoo	• • •	_	-	_

Approach	EB	WB	NB	SB
Crosswalk Length (ft)	34.6	39.2	85.3	85.1
Crosswalk Width (ft)	12.0	12.0	12.0	12.0
Total Number of Lanes Crossed	2	3	7	7
Number of Right-Turn Islands	0	0	0	0
Type of Control	None	None	None	None
Corresponding Signal Phase	6	2	4	Ó
Effective Walk Time (s)	0.0	0.0	0.0	0.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	9.0	9.0	9.0	9.0
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	0	0	0	0
85th percentile speed (mph)	30	30	30	30
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0
Right Corner Quality of Service		-	-	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	1.78	2.13	3.20	3.15
Pedestrian Crosswalk LOS	Α	В	С	С

Approach	EB	WB	NB	SB	
Crosswalk Length (ft)	78.3	86.1	132.3	84.2	
Crosswalk Width (ft)	12.0	12.0	12.0	12.0	
Total Number of Lanes Crossed	6	7	11	7	
Number of Right-Turn Islands	0	0	0	0	
Type of Control	None	None	None	None	
Corresponding Signal Phase	6	2	4	8	
Effective Walk Time (s)	0.0	0.0	0.0	0.0	
Right Corner Size A (ft)	9.0	9.0	9.0	9.0	
Right Corner Size B (ft)	9.0	9.0	9.0	9.0	
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0	
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00	
Ped. Left-Right Flow Rate (p/h)	0	0	0	0	
Ped. Right-Left Flow Rate (p/h)	0	0	0	0	
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0	
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0	
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0	
Veh. RTOR Flow in Walk (v/h)	0	0	0	0	
85th percentile speed (mph)	30	30	30	30	
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0	
Right Corner Quality of Service	-	-	-	-	
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0	
Crosswalk Circulation Code	-	-	-	-	
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0	
Pedestrian Compliance Code	Poor	Poor	Poor	Poor	
Pedestrian Crosswalk Score	2.77	2.93	3.54	3.19	
Pedestrian Crosswalk LOS	С	С	D	С	

Approach	ĒΒ	WB	NB	SB
Crosswalk Length (ft)	78.3	86.1	132.3	84.2
Crosswalk Width (ft)	12.0	12.0	12.0	12.0
Total Number of Lanes Crossed	6	7	11	7
Number of Right-Turn Islands	0	0	0	0
Type of Control	None	None	None	None
Corresponding Signal Phase	6	2	4	8
Effective Walk Time (s)	0.0	0.0	0.0	0.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	9.0	9.0	9.0	9.0
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	0	0	0	0
85th percentile speed (mph)	30	30	30	30
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0
Right Corner Quality of Service	-	_	_	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	•	-
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.70	2.81	3.49	3.18
Pedestrian Crosswalk LOS	В	С	С	С

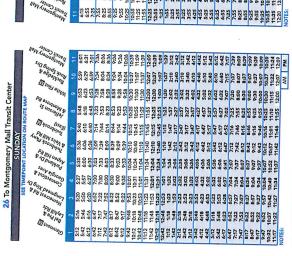
Approach	EB	WB	NB	SB
Crosswalk Length (ft)	24.0	24.6	133.3	144.0
Crosswalk Width (ft)	12.0	12.0	12.0	12.0
Total Number of Lanes Crossed	2	2	11	10
Number of Right-Turn Islands	0	0	0	0
Type of Control	None	None	None	None
Corresponding Signal Phase	6	2	0	8
Effective Walk Time (s)	0.0	0.0	0.0	0.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	9.0	9.0	9.0	9.0
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	0	0	0	0
85th percentile speed (mph)	30	30	30	30
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0
Right Corner Quality of Service	-	-	-	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.29	2.17	3.45	3.51
Pedestrian Crosswalk LOS	В	В	С	D


	everousseusse fina and			Ballio Sangaranin
Approach	EB	WB	NB	SB
Crosswalk Length (ft)	24.0	24.6	133.3	144.0
Crosswalk Width (ft)	12.0	12.0	12.0	12.0
Total Number of Lanes Crossed	2	2	11	10
Number of Right-Turn Islands	0	0	0	0
Type of Control	None	None	None	None
Corresponding Signal Phase	6	2	0	8
Effective Walk Time (s)	0.0	0.0	0.0	0.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	9.0	9.0	9.0	9.0
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	0	0	0	0
85th percentile speed (mph)	30	30	30	30
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0
Right Corner Quality of Service	-	-	~	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	-
Pedestrian Delay (s/p)	75.0	75.0	75.0	75.0
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.22	2.01	3.46	3.43
Pedestrian Crosswalk LOS	В	В	С	С

	. En	IMD.	ND	On.
Approach	EB	WB	NB	SB
Crosswalk Length (ft)	72.0	71.8	24.6	24.3
Crosswalk Width (ft)	12.0	12.0	12.0	12.0
Total Number of Lanes Crossed	5	5	2	2
Number of Right-Turn Islands	0	0	0	0
Type of Control	None	None	None	None
Corresponding Signal Phase	6	2	4	8
Effective Walk Time (s)	0.0	0.0	0.0	0.0
Right Corner Size A (ft)	9.0	9.0	9.0	9.0
Right Corner Size B (ft)	9.0	9.0	9.0	9.0
Right Corner Curb Radius (ft)	0.0	0.0	0.0	0.0
Right Corner Total Area (sq.ft)	81.00	81.00	81.00	81.00
Ped. Left-Right Flow Rate (p/h)	0	0	0	0
Ped. Right-Left Flow Rate (p/h)	0	0	0	0
Ped. R. Sidewalk Flow Rate (p/h)	0	0	0	0
Veh. Perm. L. Flow in Walk (v/h)	0	0	0	0
Veh. Perm. R. Flow in Walk (v/h)	0	0	0	0
Veh. RTOR Flow in Walk (v/h)	Õ	0	Ö	0
85th percentile speed (mph)	30	30	30	30
Right Corner Area per Ped (sq.ft)	0.0	0.0	0.0	0.0
Right Corner Quality of Service	-	-	-	-
Ped. Circulation Area (sq.ft)	0.0	0.0	0.0	0.0
Crosswalk Circulation Code	-	-	-	0.0
Pedestrian Delay (s/p)	55.0	55.0	55.0	55.0
Pedestrian Compliance Code	Poor	Poor	Poor	Poor
Pedestrian Crosswalk Score	2.68	2.65	1.79	1.79
,	2.00 B	2.03 B	1.79 A	1.79 A
Pedestrian Crosswalk LOS	В	В	Α	А

	•		
ΕB	WB	NB	SB
2.0	71.8	24.6	24.3
2.0	12.0	12.0	12.0
5	5	2	2
0	0	0	0
one	None	None	None
6	2	4	8
0.0	0.0	0.0	0.0
9.0	9.0	9.0	9.0
9.0	9.0	9.0	9.0
0.0	0.0	0.0	0.0
.00	81.00	81.00	81.00
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
30	30	30	30
0.0	0.0	0.0	0.0
-	-	-	-
0.0	0.0	0.0	0.0
-	_	-	-
5.0	55.0	55.0	55.0
oor	Poor	Poor	Poor
.57	2.56	1.77	1.76
В	В	Α	Α
	2.0 2.0 5 0 0.0 9.0 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0 71.8 2.0 12.0 5 5 0 0 one None 6 2 0.0 0.0 9.0 9.0 9.0 9.0 9.0 0.0 0	2.0 71.8 24.6 2.0 12.0 12.0 5 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

APPENDIX K BUS ROUTE INFORMATION



Bel Pre & O Walth Poder of the Control O O HORLING
O HORLING
O HORLING
O RESPONSE
MELSO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
DOMESTO SEPRIDOR
D Executive Pa M O hand serve a serve.

M O O hand serve a serve.

S o O no serve a serve.

S o O no serve a serve. KEL Marinelli Rd M notes AV Certin & WA Esprin ER Address P. 18. 0 O Plata Certer Scapping Property Scales Scales Scales 0 ×4 ×× VSPEN HILL wī – sbow notaahw – NiH naqzA – ∭ uonnado Wite Flint M – Montgomery Mall Transit Center nO abir

SEE REVERSE FOR MONDAY - FRIDAY SERVICE SEE REVERSE FOR SATURDAY SERVICE

97

Please arrive at your stop several minutes ahead of your bus' scheduled arrival. Since safe service is a priority at Ride On, buses may be delayed due to traffic or west

Outside Montgomery County240-777-0311 RIDE ON operates over 75 routes that serve all 13 Montgomery County Metrorall stations and 7 MARC stations. RIDE ON is a community bus service operated by the Montgomery County Department of Transportation. For detailed information, or to have timetables mailed, call 311. Real Time information is available Regular Mailing Address: Montgomery County DOT Division of Transit Services 101 Monroe Street, 5th Floor Rockville, MD 20850 Visit our web site at: Bet Pie & A Sonstanging & Monte or State of Action of Ac By What nads A

For special schedules, consult our www.rideonbus.com, or call 311 HOLIDAY SC

Like us on Facebook Follow us on Twitter
Acebook.com/RideOnMCT Witter.com/RideOnMCT Subscribe to enail alerts at
www.montgomerycountymd.gow

YouTube

youtube.com/c/RideOnMCT

SEE REVERSE FOR MONDAY - FRIDAY SERVICE

SEE REVERSE FOR SATURDAY SERVICE

Thank You for Riding with Us! Ride On recycled paper with sur-based in

Connecticut & Georgia Aves arkland Dr & Aspen Hill Rd Homecrest Rd & Longmead Crossing Dr Bel Pre & Layhill Rds efferson St & Montre winbrook 🔟 (East) Winbrook Pkwy k Veirs Mill Rd Rockledge & Rock Spring Drs --- Montgomery Mal Transit Center White Flint 🔟 3-5 mins 2-4 mins 4-8 mins 3-7 mins 7-14 mins 4-8 mins

EFFECTIVE: SEPTEMBER 17, 2017

WELCOME TO RIDE ON

26 To Glenmont
SUNDAY

.45

• If you are unfamiliar with your stop, sit or stands behind the line man the frince of the bus and safe the bus driver to notify you when your stop is approaching.

• Ask the bus driver if you are not sure if the bus goes to your stop.

• If you have interned secrets the hone or samewhere else, such as a public library, it may be easier for you to use an online trip planner rather than a paper timesable.

• Be mindful of changes in the schooling for holidays HOW TO RIDE A BUS Belpie & Lashing Rds Longing Sest Rules Home Home Sest Rules SEE REVERSE FOR SUNDAY SERVICE Connecticut & S retuland Dr & 26 To Glenmont M A Vois Mill Party SATURDAY 25.55 20.07 10.07 11.05 11 Monigonery Mail Apodledge & Please arrive at your stop several minutes shead of your bus' scheduled arrival. Since safe service is a priority at Ride On, buses may be delayed due to traffic or weather Minie Flint 26 To Montgomery Mall Transit Center SATURDAY SEE REVERSE FOR SUNDAY SERVICE Aninbrook Paris Asia & Parkland Dr. & Homecrest Rd & Belpie & Lashill Rds 26 To Glenmont MONDAY THROUGH FRIDAY
SEE TIMEPOINT LOCATION ON ROUTE MA Monigomery Mail 26 To Montgomery Mall Transit Center MONDAY THROUGH FRIDAY 6.47 2 6. Homecrest Rd &

FREE \$0.50 FREE

Check schedule for timepoint nearest your location. Wait at the blue and white RIDE ON bus stop sign. Arrive sew minutes before scheduled time. Have exact fare ready (did on not make change).

• Not all stops are listed on a public timetable.

- Please observe the following rules for all patrons:

 No eating, drinking, or smoking.

 Electronic devices may be played with earphones set at low level.