

ENVIRONMENTAL SUBSURFACE EVALUATION

SADDLE CREEK DRIVE PROPERTY 14709 SADDLE CREEK DRIVE BURTONSVILLE, MARYLAND 20866

ECS PROJECT NO. 47:18315-A

FOR

MTFA ARCHITECTURE, INC.

MAY 14, 2024

Geotechnical • Construction Materials • Environmental • Facilities

May 14, 2024

Ms. Meagan W. Jancy, AIA, LEED AP MTFA Architecture, Inc. 3200 Langston Boulevard Arlington, Virginia 22207

ECS Project No. 47:18315-A

Reference: Environmental Subsurface Evaluation

> Saddle Creek Drive Property 14709 Saddle Creek Drive Burtonsville, Maryland 20866

Dear Ms. Jancy:

Pursuant to your request, ECS Mid-Atlantic, LLC (ECS) is pleased to provide you with the results of our environmental subsurface evaluation performed at the above-referenced property (Figure 1). Our services were provided in accordance with ECS Proposal No. 47:32632-EP, dated March 15, 2024.

BACKGROUND

ECS previously completed a Phase I Environmental Site Assessment (ESA) for the subject property (ECS Project Number 47:18315). At the time of the report's completion, the 10.95acre subject property consisted of undeveloped land, including a graded field and a portion of wooded land at the southeastern corner of the site. The assessment identified the following recognized environmental conditions in connection with the subject property:

The subject property was depicted as a portion of a greater sand and gravel pit from as early as 1963 through at least 1989. By 2007, the subject property was depicted as having been reforested. Several mounds and/or suspected filled areas were observed at the southeastern, wooded portion of the subject property during site reconnaissance, which appeared to consist of sand, gravel, asphalt, and rock. No documentation was available regarding the source of fill material associated with the surface mine's reclamation. The potential use of impacted soils for fill material is considered to represent a REC of the subject property.

Based upon the findings of the Phase I ESA, ECS proposes to perform the following scope of work to assess the above-referenced concerns.

SCOPE OF WORK

Soil Evaluation Methodologies

Prior to advancing any probes, ECS contacted Miss Utility to locate public subsurface utilities onsite. Additionally, ECS utilized a private utility locator to mark the locations of private utilities or other utilities not covered by Miss Utility that were in the vicinity of our probe locations.

In an effort to characterize the soil onsite, ECS divided the subject property into two (2) operational units (OU-1 and OU-2), differentiating between the graded portion and the wooded portion of the site. Track-mounted GeoProbe® direct push sampling equipment was employed to advance a total of twenty (20) probes at the subject property. A GeoProbe® is a hydraulic hammer that pushes a 2-inch diameter steel rod into the ground. A soil core is recovered in a polyethylene sleeve with each removal of the probe. The probes were advanced to a depth of approximately 15 feet below existing surface grades, groundwater, or probe refusal, whichever occurred first.

Within each probe, one (1) soil aliquot was collected from each depth interval outlined in Exhibit A below. For each operational unit, ten (10) soil aliquots were collected at each depth interval and used to generate representative composite samples for those intervals. In the event that no soil was recovered at a target depth, additional aliquots were collected from neighboring borings so that each depth interval consisted of a 10-point composite sample. In total, eight (8) composite soil samples were submitted for the following analyses:

- Poly-Aromatic Hydrocarbons (PAH) EPA Method 8270
- Priority Pollutant Metals EPA Method 6020
- Hexavalent Chromium EPA Method 7199 or similar
- Poly-Chlorinated Biphenyls (PCBs) EPA Method 8082

Exhibit A: Vertical Operational Unit Depths

Vertical OU	Vertical OU
Identification	Depth (feet)
OU-1A, OU-2A	0-2
OU-1B, OU-2B	2-5
OU-1C, OU-2C	5-10
OU-1D, OU-2D	10-15

During sample collection, soil cores from each boring location were screened in one-foot increments using a MiniRAE 3000 photoionization detector (PID) with a 10.6eV bulb, calibrated to a 100-parts per million (ppm) isobutylene standard prior to use. The PID is useful for qualitative field screening of Volatile Organic Compounds (VOCs) and provides a basis for field comparison of soil samples. The PID does not quantify or identify specific compounds; in addition, it does not screen for methane, metals, or other inorganic compounds. In the absence of detectable PID readings, select grab samples were collected from fill horizons, termination depths, or other areas where contaminants of potential concern would be expected to originate or migrate. The collected soil samples were submitted for the following analyses:

- Total Petroleum Hydrocarbons (TPH-DRO/GRO) EPA Method 8015
- Volatile Organic Compounds (VOCs) EPA Method 8260

Soil samples were placed in laboratory-grade jars with Teflon lids, packed with ice, and submitted to an independent laboratory for chemical analyses under chain of custody documentation.

Subsurface Water Evaluation Methodologies

ECS converted four (4) of the borings advanced at the subject property into temporary sampling points. Dedicated 1-inch diameter PVC was used to construct the sampling points. Factory-slotted PVC was placed within the water column to allow the flow of subsurface water into the sampling points. ECS utilized a peristaltic pump with dedicated tubing, or dedicated bailers, to collect subsurface water samples from the temporary sampling points.

The subsurface water samples were placed in laboratory-grade jars, placed on ice, and submitted to an independent laboratory for chemical analyses of the following:

- TPH-DRO/GRO EPA Method 8015
- VOCs EPA Method 8260

Following completion, each boring was backfilled with soil cuttings and bentonite as needed.

Soil Vapor Evaluation Methodologies

ECS installed six (6) soil vapor sampling points (SV-01 through SV-06) at the subject property. The samples were collected in general conformance with protocols discussed in the Interstate Technology Regulatory Council's (ITRC) *Vapor Intrusion: A Practical Guideline* (January (2007) guidance document. The soil vapor points were set at a depth of approximately 5 feet below surface grade. After reaching the desired sampling depth, a dedicated, stainless-steel vapor implant was lowered to the bottom of the sampling point. An appropriate length of 1/4-inch diameter Teflon lined tubing was attached to the implant, through which the vapor sample will be collected at the surface. After placing the implant, silica sand was used to fill the sample point annulus to a height of approximately one foot above the implant. Bentonite was then added from the level of the sand to the ground surface and hydrated to create a seal above the implant.

Prior to sampling, ECS purged three volumes of air from the sampling points and tubing using a surface pump. After purging the sample points, the tubing was capped. As a bentonite seal was used in the construction of the soil vapor sampling points, the seals were allowed to set for at least 24 hours prior to sample collection.

The vapor samples were collected over a 4-hour period. ECS collected the samples in 1.4-liter summa canisters equipped with 4-hour flow controllers. The flow controllers were set to a consistent flow rate throughout the sample collection period. Upon collection, the samples were submitted for VOC analysis via EPA Method TO-15.

RESULTS

Soil Sampling Results

On May 1 and 2, 2024, ECS mobilized to the subject property and advanced a total of twenty probes (OU1-01 to OU1-10 and OU2-01 to OU2-10) using track-mounted GeoProbe direct push equipment to depths ranging from approximately 15 to 20 feet below ground surface (bgs). Approximate boring locations are depicted in the attached Figure 2, and boring logs are included in Attachment A. The soils encountered on the graded portion of the site (OU-1) consisted primarily of sand and silty sand, with gravel, and soils encountered on the wooded portion (OU-2) consisted primarily of silt and sand with gravel and lean-to-fat clays.

Soil samples were field screened using a MiniRAE 3000 PID. PID readings were collected from the soil cores in one-foot increments from surface grade to the termination of each soil probe. Field indicators of significant petroleum impacts, including petroleum staining, odors, or PID readings, were not identified at any of the probe locations.

The results of the soil laboratory analysis were compared to the Maryland Department of the Environment (MDE) Cleanup Standards for Residential and Non-Residential Use. Concentrations of contaminants of potential concern (COPCs) did not exceed MDE Residential or Non-Residential cleanup criteria in any of the soil samples submitted for analysis, except for the following:

• Concentrations of Hexavalent Chromium exceeded the MDE Cleanup Standard for Residential Use of 0.3 milligrams per kilogram (mg/kg) in composite soil samples OU-2C (0.382 mg/kg) and OU-2D (0.461 mg/kg).

The results of the soil sample laboratory analysis are included in Attachment B and are summarized in the attached Tables 1A and 1B.

Subsurface Water Sampling Results

On May 2, 2024, ECS collected four (4) subsurface water samples (GW1-01, GW1-03, GW1-08, and GW1-09) at the subject property. These samples appeared to consist of perched water trapped above the aquifer and do not represent groundwater conditions at the subject property. The subsurface water sample identification numbers correspond with the numerical designations of the boring locations. The results of the subsurface water laboratory analysis were compared to applicable MDE Groundwater Cleanup Standards. Concentrations of COPCs were not detected above the applicable MDE groundwater cleanup criteria in any of the subsurface water samples submitted for analysis.

The results of the subsurface water sample laboratory analysis are included in Attachment B and are summarized in the attached Table 2.

Soil Vapor Sampling Results

On May 2, 2024, ECS collected six (6) soil vapor samples (SV-01 to SV-06) from the subject property. The sample collected at soil vapor location SV-02 collected little to no vapor during the sampling period and thus could not be analyzed by the laboratory. ECS suspects that this was due to the relatively dense lithology with very little pore space at this sample location.

ECS compared the vapor sample results to the applicable MDE Tier 1 and Tier 2 Residential and Commercial Screening Levels. Based upon the laboratory analytical results, concentrations of VOCs did not exceed MDE Tier 1 Residential or Commercial Screening Levels in any of the soil vapor samples collected onsite, except for the following:

 Concentrations of 1,4-Dichlorobenzene exceeded the MDE Tier 1 Residential Screening Level of 46 micrograms per cubic meter (μg/m³) in soil vapor samples SV1-10 (88.3 μg/m³) and SV2-05 (50.7 μg/m³).

The results of the soil vapor sample laboratory analysis are included in Attachment B and are summarized in the attached Table 3.

CONCLUSIONS

Concentrations of contaminants of potential concern (COPCs) did not exceed applicable Maryland Department of the Environment (MDE) Residential or Non-Residential cleanup criteria in any of the soil, surface water, or soil vapor samples collected at the subject property, with the exception of the following:

- Concentrations of Hexavalent Chromium exceeded the MDE Cleanup Standard for Residential Use in composite soil samples OU-2C and OU-2D, which were collected from the wooded portion of the site at depths of 5 to 15 feet below ground surface (bgs).
- Concentrations of 1,4-Dichlorobenzene exceeded the MDE Tier 1 Residential Screening Level in soil vapor samples SV1-10 and SV2-05, which were collected from the northeastern side of the grassy portion of the site and the center of the wooded portion, respectively.

ECS understands that a new school facility is proposed for development at the subject property. Based on the soil sampling results and the proposed use of the site, soil excavated from depths of 5 to 15 feet bgs from the wooded portion of the site (OU-2) may not be suitable for reuse at the subject property or at an off-site residential disposal facility without additional assessment. It appears that a minimum of 5 feet of unimpacted soil is currently located above operational units OU-2C and OU-2D, which would eliminate contact with potential receptors. However, ECS recommends submitting the findings of this report to the MDE for input, as only the MDE can make a reuse or suitability determination once an exceedance of the typical cleanup criteria occurs. ECS also recommends the submittal of this report to the MDE if the soil at a depth of five feet below grade in OU-2 will become exposed or less than 2 feet below surface grade during site development.

Based on soil vapor sampling results, the potential for a vapor encroachment issue exists at the site. ECS recommends that additional vapor sampling be performed within the footprint of the proposed structures to determine whether a sub-slab vapor mitigation system is needed to prevent the migration of VOC vapors into occupied portions of the proposed structures.

LIMITATIONS

The study was conducted in general accordance with industry standards. It should be noted, however, that the samples should be considered isolated data points and do not reflect homogeneous subsurface conditions. While the assessment was conducted to evaluate the presence of subsurface compounds of concern, the purpose of this study did not include determining the complete vertical and/or lateral extent of impacts, if any, at this site. The subsurface sampling points were selected based on the site history, likely areas where subsurface contamination might be present, and/or potential exposure pathways.

The conclusions and/or recommendations presented within this report are based upon a reasonable level of study within normal bounds and standards of professional practice for a site in this particular geographic and geologic setting. The intent of this assessment is to identify the presence of environmental contamination in the subsurface of the site. Observations, conclusions, and/or recommendations pertaining to environmental conditions at the subject site are necessarily limited to conditions observed and/or materials reviewed at the time this study was undertaken.

No warranty, expressed or implied, is made with regard to the conclusions and recommendations presented within this report. This report is provided for the exclusive use of the client and is not intended to be used or relied upon in connection with other projects or by other unidentified third parties. The use of this report by an undesignated third party or parties will be at the sole risk of the third party or parties, and ECS disclaims liability for such third-party use or reliance.

ECS has appreciated the opportunity to work with you on this project. If you have any questions regarding this report or other aspects of the project, please feel free to contact us at (410) 859-4300.

Respectfully submitted, **ECS MID-ATLANTIC, LLC**

Nicholas Stella

Environmental Project Manager

Ridol Stelle

Michael M. Bell, CHMM Environmental Principal

2 Tech

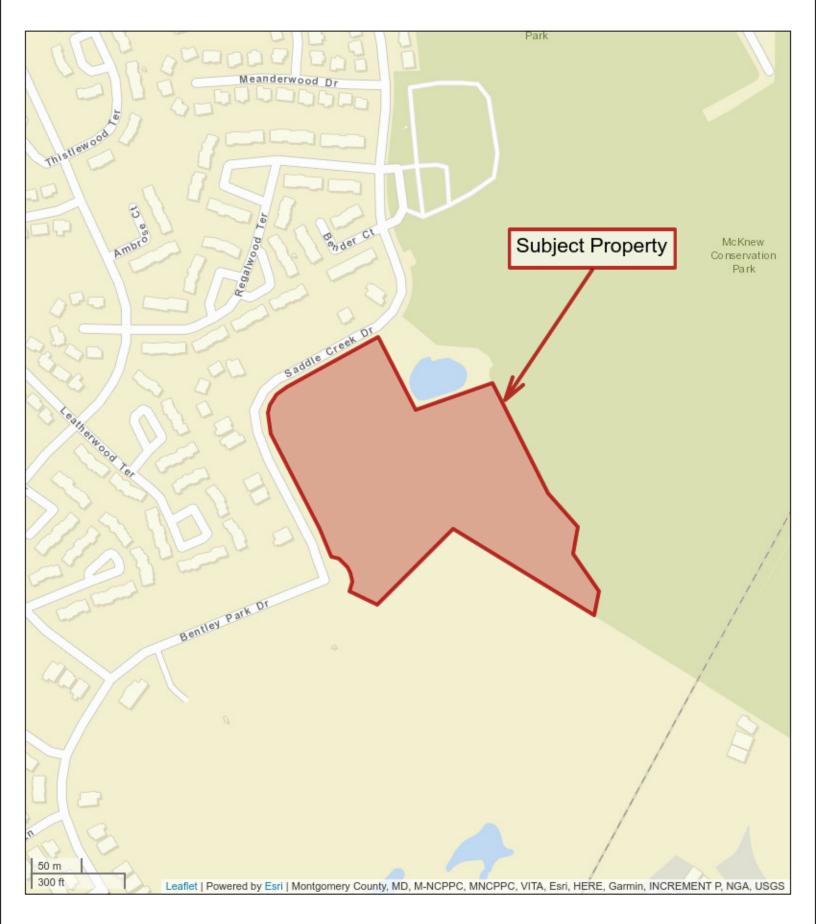
Appendix:

Figure 1...... Site Location Map Figure 2..... Site Features Map

Table 1A..... Composite Soil Sample Analytical Results

Table 1B..... Grab Soil Sample Analytical Results

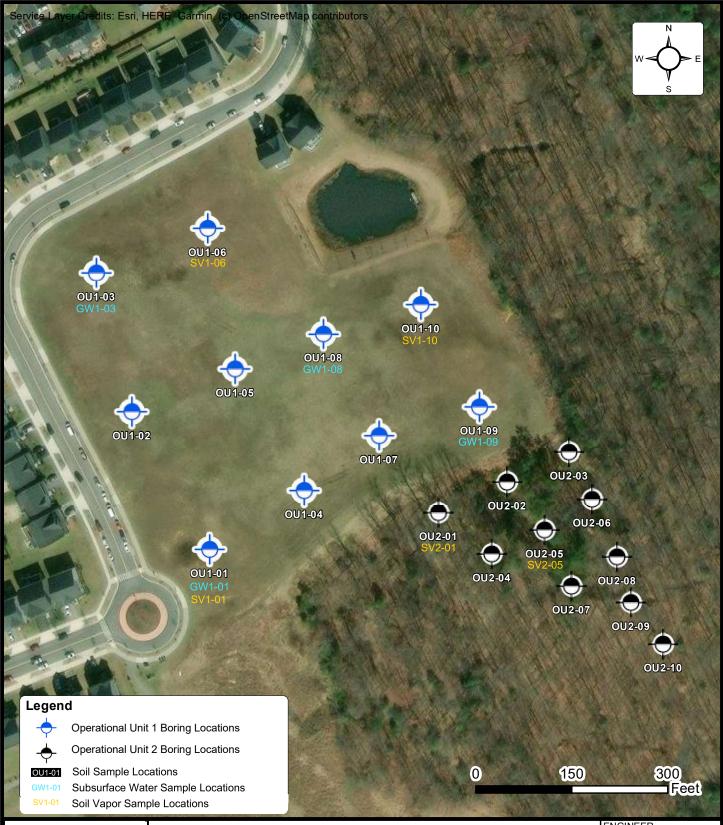
Table 2..... Groundwater Sample Analytical Results


Table 3.....Soil Vapor Sample Analytical Results

Attachment A..... Probe Logs

Attachment B.....Laboratory Results

Figures



Site Location Map Saddle Creek Drive Property 14709 Saddle Creek Drive Burtonsville, Maryland 20866

BORING LOCATION DIAGRAM SADDLE CREEK DRIVE P2ESA

14709 SADDLE CREEK DRIVE, BURTONSVILLE,

ENGINEER MMB

SCALE AS NOTED

PROJECT NO. 47:18315-A

FIGURE 2

DATE 5/16/2024

Tables

Table 1ASaddle Creek Property Composite Soil Sample Analytical Results

Sample ID	OU-1A	OU-1B	OU-1C	OU-1D	OU-2A	OU-2B	OU-2C	OU-2D	MDE Residential Soil Cleanup	MDE Non-Residential Soil
Date Collected	02-May-24	02-May-24	02-May-24	02-May-24	01-May-24	01-May-24	01-May-24	01-May-24	Standard (mg/kg)	Cleanup Standard (mg/kg)
Approximate Depth (Feet)	0-2	2-5	5-10	10-15	0-2	2-5	5-10	10-15	Standard (mg/kg)	Cleanup Standard (mg/kg)
Semivolatile Organics by EPA 8270D (mg/kg	g)									
Total Semivolatile Organics	ND (Varies)	Varies	Varies							
Polychlorinated Biphenyls by EPA 8082A (m	ig/kg)									
Total Polychlorinated Biphenyls	ND (Varies)	Varies	Varies							
Total Metals Analysis by EPA 6020B (mg/kg	1)									
Arsenic	1.88	2.93	2.59	1.97	5.25	3.99	3.61	5.63	10 ⁽¹⁾	28 ⁽¹⁾
Beryllium	ND (0.270)	0.315	ND (0.278)	ND (0.287)	0.357	0.43	0.317	ND (0.304)	15,000	22,000
Chromium	10.5	15.4	10.7	9.82	20.8	17.7	18.1	25.9	12,000 ⁽²⁾	180,000 ⁽²⁾
Copper	5.06	5.65	6.49	4.45	7.21	8.32	7.79	12.2	310	4,700
Lead	4.46	4.22	3.96	3.09	5.18	6.72	3.9	5.4	200	550
Mercury	0.0148	0.0172	0.0176	0.0199	0.027	0.0344	ND (0.0144)	0.0307	1.1	4.6
Nickel	2.88	2.93	2.53	2.88	4.38	8.06	1.56	0.709	150	2,200
Selenium	0.747	0.854	1.07	1.23	1.1	1.27	1.23	1.69	39	580
Zinc	8.65	8.72	8.81	8.26	15.1	22.8	6.59	8.51	2,300	35,000
Hexavalent Chromium by EPA 7199 (mg/kg)								_	
Chromium, Hexavalent	ND (0.162)	ND (0.166)	ND (0.167)	ND (0.172)	0.171	0.263	0.382	0.461	0.3	6.3
/										

⁽¹⁾ The MDE has adopted a standard which incorporates the bioavalability. The above standard is the typical bioavailability standard enforced by the MDE.

NA = Not analyzed

RSL = EPA Regional Screening Level

NP = The MDE/EPA has no published standard

mg/kg = Parts per million (milligrams per kilogram)

ND (#) = Not Detected (Laboratory Detection Limit)

⁽²⁾ Trivalent chromium standard

Table 1BSaddle Creek Property
Grab Soil Sample Analytical Results

Sample ID Date Collected Approximate Depth (Feet)	1-01 02-May-24 4.5-5	1-03 02-May-24 15-15.5	1-04 02-May-24 14.5-15	1-05 02-May-24 5.5-6	1-06 02-May-24 13-13.5	1-08 02-May-24 14-14.5	1-09 02-May-24 19-19.5	1-10 02-May-24 1.5-2	MDE Residential Soil Cleanup Standard (mg/kg)	MDE Non-Residential Soil Cleanup Standard (mg/kg)
Volatile Organics by EPA 8260B (mg/kg)										
Acetone	ND (0.0108)	0.013	0.0515	0.101	ND (0.0124)	ND (0.0123)	ND (0.0123)	ND (0.0109)	6,100	61,000
Methylene Chloride	0.0282	0.0325	0.0275	0.0336	0.0331	0.0353	0.0346	0.026	35	320
Total Petroleum Hydrocarbons by EPA 801	5C (mg/kg)									
Gasoline-Range Organics	ND (0.11)	ND (0.12)	ND (0.11)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.11)	230	620
Diesel-Range Organics (C10-C28)	ND (8.6)	ND (9.9)	24.2	ND (9.5)	ND (9.9)	ND (9.8)	ND (9.8)	ND (8.7)	230	620
NA - Nat analysed										

NA = Not analyzed

RSL = EPA Regional Screening Level

NP = The MDE/EPA has no published standard

mg/kg = Parts per million (milligrams per kilogram)

ND (#) = Not Detected (Laboratory Detection Limit)

Sample ID	2-01	2-03	2-04	2-05	2-06	2-07	2-09	2-10	MDE Residential Soil	MDE Non-Residential Soil
Date Collected	01-May-24	01-May-24	01-May-24	01-May-24	01-May-24	01-May-24	01-May-24	01-May-24		
Approximate Depth (Feet)	8.5-9	10.5-11	9.5-10	1.5-2	3.5-4	14-14.5	9-9.5	14.5-15	Cleanup Standard (mg/kg)	Cleanup Standard (mg/kg)
Volatile Organics by EPA 8260B (mg/kg)										
Acetone	ND (0.0119)	ND (0.0124)	ND (0.0108)	ND (0.0106)	ND (0.0117)	ND (0.012)	ND (0.0122)	ND (0.011)	6,100	61,000
Methylene Chloride	0.0274	0.0347	0.0288	0.0227	0.03	0.029	0.0312	0.0258	35	320
Total Petroleum Hydrocarbons by EPA 8015	5C (mg/kg)									
Gasoline-Range Organics	ND (0.12)	ND (0.12)	ND (0.11)	ND (0.11)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.11)	230	620
Diesel-Range Organics (C10-C28)	ND (9.5)	ND (10.0)	11.1	11	ND (9.4)	ND (9.6)	ND (9.7)	ND (8.8)	230	620

NA = Not analyzed

RSL = EPA Regional Screening Level

NP = The MDE/EPA has no published standard

mg/kg = Parts per million (milligrams per kilogram)

ND (#) = Not Detected (Laboratory Detection Limit)

Table 2Saddle Creek Property
Subsurface Water Sample Analytical Results

Sample ID Date Collected	GW1-01 02-May-24	GW1-03 02-May-24	GW1-08 02-May-24	GW1-09 02-May-24	Groundwater Cleanup Standards (μg/L)
Approximate Depth (Feet)	16	15	14	15	(p.g/ =/
Volatile Organics by EPA 8260B (μg/L)					
Acetone	114	17.3	32.9	ND (10.0)	1,400
Carbon Disulfide	ND (1.0)	1.3	ND (1.0)	ND (1.0)	81
Chloroform	ND (1.0)	ND (1.0)	4.3	ND (1.0)	80
Total Petroleum Hydrocarbons by EPA 8015	iC (μg/L)				
Gasoline-Range Organics	ND (45.0)	ND (45.0)	ND (45.0)	ND (45.0)	47
Diesel-Range Organics (C10-C28)	ND (230)	ND (270)	ND (240)	ND (260)	47

NA = Not analyzed

NP = The MDE/EPA has no published standard

μg/L = micrograms per liter

ND (#) = Not Detected (Laboratory Detection Limit)

Table 3Saddle Creek Property
Soil Vapor Sample Analytical Results

Sample ID	SV1-01	SV1-06	SV1-10	SV2-01	SV2-05	MDE Tier 1 Residential Soil	MDE Tier 2 Residential Soil	MDE Tier 1 Non-Residential
Date Collected	02-May-24	02-May-24	02-May-24	02-May-24	02-May-24	Vapor Screening Level	Vapor Screening Level	Soil Vapor Screening Level
Approximate Depth (Feet)	5	5	5	5	5	(μg/m³)	(μg/m³)	(μg/m³)
Volatile Organics by EPA TO-15 (μg/m³)								
Acetone	31.5	ND (9.60)	81.1	12.3	15.8	660,000	3,300,000	13,700,000
Benzene	5.75	53.7	3.96	11	ND (0.64)	64	320	1,600
1,3-Butadiene	ND (1.76)	ND (1.76)	ND (1.76)	4.25	ND (1.76)	16.4	82	410
Carbon Disulfide	6.48	24.4	ND (6.24)	ND (6.24)	ND (6.24)	14,600	73,000	310,000
Chloroform	1.76	ND (0.97)	0.98	5.86	ND (0.97)	22	110	540
Chloromethane	0.5	ND (0.41)	0.99	ND (0.41)	0.99	1,880	9,400	40,000
Cyclohexane	1.51	26.7	3.58	ND (0.69)	ND (0.69)	126,000	630,000	2,650,000
1,4-Dichlorobenzene	ND (1.20)	ND (1.20)	88.3	33.4	50.7	46	230	1,120
1,2-Dichloropropane	ND (0.92)	ND (0.92)	1.11	ND (0.92)	ND (0.92)	84	420	11,760
Ethyl Acetate	ND (14.4)	ND (14.4)	46.1	ND (14.4)	ND (14.4)	1,480	7,400	31,000
Ethylbenzene	2.43	7.82	22.4	1.56	ND (0.87)	200	1,000	5,000
4-Ethyltoluene	1.57	2.16	ND (0.98)	ND (0.98)	ND (0.98)	NP	NP	NP
N-Heptane	14.9	211	28.5	6.89	0.98	8,400	42,000	176,000
Hexane	ND (56.0)	584	ND (56.0)	ND (56.0)	ND (56.0)	14,600	73,000	308,000
Isopropylbenzene (Cumene)	ND (1.60)	ND (1.60)	1.97	ND (1.60)	ND (1.60)	8,400	42,000	176,000
Methyl Tert-Butyl Ether (MTBE)	0.87	ND (0.82)	ND (0.82)	ND (0.82)	ND (0.82)	1,880	9,400	47,200
Methyl Ethyl Ketone (2-Butanone)	7.08	7.2	10	ND (1.36)	ND (1.36)	106,000	530,000	2,200,000
Methyl Isobutyl Ketone	ND (3.28)	ND (3.28)	3.44	ND (3.28)	ND (3.28)	64,000	320,000	1,320,000
Propene	253	3500	408	22.7	9.29	64,000	320,000	1,320,000
Styrene	1.02	2.22	ND (0.59)	1.02	1.7	21,000	105,000	440,000
Tetrachloroethene	8.95	ND (2.80)	ND (2.80)	ND (2.80)	ND (2.80)	840	4,200	18,000
Toluene	15.5	74.5	31.7	21.6	3.77	106,000	530,000	2,200,000
Trichlorofluoromethane (Freon 11)	1.35	1.57	ND (1.10)	1.35	1.35	14,600	73,000	310,000
1,2,4-Trimethylbenzene	1.18	1.57	2.36	ND (0.98)	ND (0.98)	1,260	6,300	26,400
2,2,4-Trimethylpentane	ND (0.93)	ND (0.93)	4.67	2.06	ND (0.93)	NP	NP	NP
Vinyl Chloride	ND (0.51)	ND (0.51)	ND (0.51)	0.51	ND (0.51)	34	170	2,800
O-Xylene	1.74	3.65	17	1.22	ND (0.87)	2,100	10,500	44,000
M- & P-Xylenes	4.69	10.3	38.9	3.13	1.91	2,100	10,500	44,000

Maryland Department of the Environment Land Restoration Program Vapor Intrusion Guidance Document. Published September 2019.

NP = The MDE has no published standard

ND (#) = Not Detected (Laboratory Detection Limit)

μg/m3 = Parts per billion (micrograms per cubic meter)

Attachment A

CLIENT:							PROJECT NO.: BORING NO.:				SHEET:			
	rchitecture						47:18315-A	OU1-01		1 of 1			_	LCC.
	T NAME: Creek Driv		Δ				DRILLER/CON' GSI Mid-Atlant							
	CATION:	<i>_L</i> _J	-				SSI MING ACIDITY	,			255 27	IDC:::		Vissia
14709 S	addle Cree	ek Drive	e, Burto		aryland, 20866	1				LC	OSS OF C	IKCULA	IIUN	<u> </u>
LATITUI	DE:	T		LONGITU	JDE:	STATION:		SURFACE E	ELEVATION:	В	воттом	OF CAS	ING	
ОЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	Cription of Mat	TERIAL			WATED EVELS	, , , , , , , , , , , , , , , , , , ,	ELEVATION (FT)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness[CDAVEL VAUELL	الما مادالماد المالات					-	
]				0.0	(SP/GP) SAND WIT	H GRAVEL/G	JKAVEL WITH S	AND, readish bi	rown, ary				-	
]				0.0	(SM) SILTY SAND,	tan, moist								
]													1	
5	1-01			0.0									_	
5 -				0.0									- 5-	
-				0.0	(SM/GM) SILTY SA	ND WITH G	RAVEL/GRAVEL	WITH SAND, bro	own, moist	///	•		-	
]				0.0									-	
													- -10 –	
				0.0						///			-10	
_				0.0				///	•		-			
_				0.0						-				
_				0.0									_	
15-				0.0							•		- -15 –	
				0.0									-13	
_				0.0	(SM/GM) SILTY SA	ND WITH GF	RAVEL/GRAVEL	WITH SAND, tar	n, wet	///	•		-	
_				0.0						//	1 71		-	
-				0.0									-	
20				0.0	(SM) SILTY SAND,								-20 –	
20				0.0		END (OF BORING AT	Γ 20 FT					-20	
_													-	
-													-	
-													-	
25 -													- -25 –	
25												-	-23	
_													=	
_													-	
_													_	
30													_	
30					DDECEME THE SECOND	NAATE DO:	A DV/ LINES	EEN COU TIEST		ANGE	1407.5		<u> </u>	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	THE S L (First E			n lines RE	PRESENT THE APPROXI						viay BI	E GRA	DUAL	
	/L (Comp					BORII	NG STARTED: NG	May 02 2024	CAVE IN					
▼ N	/L (Seaso	nal Hig	sh Wat	er)		СОМ	PLETED:	May 02 2024	HAMMEI	K TYPE:				
▼ W	/L (Stabili	zed)					PMENT: DT GeoProbe	LOGGED BY: Nick Stella	DRILLING	METHOD):			
		-			ENVI		NTAL BORE							

CLIENT: PROJECT NO.: BORING N										SHEET:				
	rchitecture T NAME:						47:18315-A DRILLER/CON	OU1-02		1 of 1				FCC.
	reek Driv		Δ.				GSI Mid-Atlant							
SITE LOC								,			1088.0	DE CIRCI	JLATION	\(\)
		ek Drive	e, Burto		laryland, 20866	T		T			LU33 C	OF CINC	JEATION	7,00%
LATITU	DE:			LONGIT	JDE:	STATION:		SURFACE	ELEVATION:		ВОТТ	OM OF	CASING	
ОЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness		S 41/51 14/1 7 11 6	441D 11:11					-	
]				0.0	(SP/GP) SAND WI	TH GRAVEL/G	GRAVEL WITH S	AND, reddish b	rown, moist				_	
				0.0									_	
				0.0									-	
5-				0.0						12. 2	: \$\bar{S}_2		-5 -	
				0.0	(SM/GM) SILTY SA	ND WITH GR	RAVEL/GRAVEL	WITH SAND, br	own, moist	V::/:	/ :		-	
				0.0						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			_	
				0.0						//	/ •		-	
													_	
10 -													-10	
				0.0						V:/: /: /			_	
-				0.0										
]				0.0	(SM) SILTY SAND,		/		-					
-				0.0	(3111) 31211 371112)	tan, moist							_	
15				0.0		END C	OF BORING AT	15 FT			11:1		-15	
-													-	
_													-	
-													-	
-													-	
20 –													-20 -	
													-	
													-	
													-	
25 –													-25 -	
25-													-25	
]													-	
_													-	
													_	
30														
	THE	TD ATIF	ICATIO	N I INIEC DE	PRESENT THE APPROXI	MATE BOLIND	ARVIINES DETM	FEN SOIL TYPES 1	N_SITH THE TO	ANSITION	1 1 1 1 1 1	/ BE C	BVDIIVI	
\\ \to \w	L (First E				TINESENT THE APPROXI		NG STARTED:	May 02 2024	CAVE IN		ı ıvıAĭ	ו טב ט	MADUAL	•
	L (Comp					BORIN								
▼ W	/L (Seaso	nal Hig	gh Wat	er)		СОМЕ	PLETED:	May 02 2024	HAMMEI	K IYPE:				
▼ W	/L (Stabili	zed)					PMENT: OT GeoProbe	LOGGED BY: Nick Stella	DRILLING	METHO	D:			
					ENV		ITAL BOREI							

### 47:3815 A	CLIENT:							PROJECT NO.:		BORING N	IO.:	SHEET	:				
Saddic Creek Drive PSEA 1979 Saddic Creek Drive PSEA 1970								47:18315-A DRILLER/CON		0 U1-03		1 of 1					EC9
14709 SAND STATE				4				I									
A													LO	SS OI	F CIRCU	JLATION)100 <i>x</i>)
Topic September Septembe			ek Drive	e, Burto			STATION:		SU	JRFACE EI	EVATION:						
The Stratification Lines represent the approximate Boundary Lines Between Soil, Types, in Situ the Transition May Be gradual. The Stratification Lines represent the approximate Boundary Lines Between Soil, Types, in Situ the Transition May Be gradual. W. (Sirst Encountered) The Stratification Lines represent the approximate Boundary Lines Between Soil, Types, in Situ the Transition May Be gradual. W. (Campleton) Work (Campleton) Work (Campleton) Work (Stabilized) Topsoil Thickness[6,00"] (SM) SILTY SAND, tan, moist -55101010101010-						1							В	отто	OM OF	CASING	
10	DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	CRIPTION OF MAT	TERIAL						WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
10	-				0.0	Topsoil Thickness	[6.00"]	DAVE 1141TH	CAND	11:11						-	
10	-					(SP/GP) SAND WIT	TH GRAVEL/G	GRAVEL WITH S	SAND, re	eddish bro	wn, moist					-	
10]															-	
10	_															_	
10	5-					(SM) SILTY SAND,	tan, moist									-5 -	
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	_					(SM) SILTY SAND,	reddish brov	vn to tan, mois	st							_	
15 1-03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4				0.0											_	
115	-				0.0											_	
18														_			
20	10				0.0											-10	
1-03	-				0.0											-	
15	-															-	
15 1-03	-															-	
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	15														∇	-15 -	
20 0.0 0.0 0.0 END OF BORING AT 20 FT 25 0 0.0 END OF BORING AT 20 FT THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 15.00 BORING STARTED: Way 02 2024 Awy 02 2024 Awy 02 2024 CAVE IN DEPTH: WL (Completion) BORING COMPLETED: COMPLETED: COMPLETED: F822DT GeoProbe Wick Stella DRILLING METHOD: Nick Stella DRILLING METHOD:	10	1-03				(SM) SILTY SAND,	tan, saturate	ed								-10	
25 -	_															_	
END OF BORING AT 20 FT 25 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 15.00 BORING STARTED: WL (Completion) BORING STARTED: COMPLETED: COMPLET	_				0.0											_	
25	-				0.0											_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING STARTED: WL (Seasonal High Water) WL (Seasonal High Water) WL (Stabilized) DRILLING METHOD: Nick Stella DRILLING METHOD:	20				0.0		END (OF BORING AT	T 20 FT							-20	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	-															_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	4															-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	-															-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING STARTED: WL (Seasonal High Water) WL (Seasonal High Water) WL (Stabilized) DRILLING METHOD: Nick Stella DRILLING METHOD:	25															25	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 15.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL CAVE IN DEPTH: LOGGED BY: NICK Stella DRILLING METHOD:	257															- 25 -	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 15.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL CAVE IN DEPTH: LOGGED BY: NICK Stella DRILLING METHOD:	-															-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 15.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROVIDENCE STARTED: EQUIPMENT: FOUR PLANSITION MAY BE GRADUAL CAVE IN DEPTH: LOGGED BY: Nick Stella DRILLING METHOD:	4															-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 15.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL CAVE IN DEPTH: LOGGED BY: NICK Stella DRILLING METHOD:	_															_	
✓ WL (First Encountered) 15.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: ✓ WL (Completion) BORING COMPLETED: May 02 2024 HAMMER TYPE: ✓ WL (Seasonal High Water) EQUIPMENT: REQUIPMENT: Nick Stella LOGGED BY: Nick Stella DRILLING METHOD:	30													\dashv			
WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: FEQUIPMENT: Nick Stella DRILLING METHOD:		THE S	STRATIF	ICATIO	N LINES RE	L EPRESENT THE APPROXI	MATE BOUND	ARY LINES BETW	/EEN SOIL	TYPES. IN	-SITU THE TR	RANSITIO	N NC	J VAY	BE G	RADUAL	<u>.</u>
WL (Seasonal High Water) COMPLETED: EQUIPMENT: FRAZEDT GeoProbe Nick Stella May 02 2024 HAMMER TYPE: DRILLING METHOD:	∇ W	/L (First E	ncoun	tered)		15.00	BORII	NG STARTED:	May 0	2 2024	CAVE IN	DEPTH	:				
WL (Seasonal High Water) EQUIPMENT: LOGGED BY: DRILLING METHOD: Nick Stella DRILLING METHOD:									May 0	2 2024	HAMMEI	R TYPE	:				
/822D1 GeoProbe Nick Stella				sh Wat	er)		-				Dellaine	ב אונדי	100				
	<u> </u>	/L (Stabili	zed)			FNIV					DIVILLING	۱۸۱۲ ۱۲ د		•			

CLIENT:							PROJECT NO.:	I	RING NO.:	SHEET:			
	rchitecture T NAME:	e, Inc.					47:18315-A DRILLER/CON	TRACTOR:	L-04	1 of 1			EC 9
	Creek Drive	e P2ES/	4				GSI Mid-Atlant						
SITE LO	CATION:						1			105	S OF CIRC	CULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		k Drive	e, Burto	LONGITU	laryland, 20866	CTATIONI		CLIDE	ACE ELEVATION:				
LATITUI	DE:		ı	LONGIT	JUE:	STATION:		SUKF	ACE ELEVATION:	BC	ттом ог	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	⁻ ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness[(SM/GM) SILTY SA		RAVEL/GRAVEL	WITH SAN	D brown moist		3	_	
4				0.0	(SIVI) GIVI) SIEI I SI	W W W W W W W W W W W W W W W W W W W	over, on ver	VV1111 37 (1V	<i>b</i> , 610W11, 1110130		•	_	-
-				0.0							-	-	
4				0.0							?	-	
5				0.0							•	-5-	
-				0.0	(SC/GC) CLAYEY SA	AND WITH GI	RAVEL/GRAVEL	WITH SAN	ND, brown, moist		•	-	-
=				0.0								-	
]				0.0							3		
10-				0.0								-10	
-				0.0							3	_	-
=				0.0						-			
4				0.0					-	-			
-				0.0								-	1
15	1-04			0.0		END C	OF BORING AT	T 15 FT		1111	<u>-</u>	-15	
_												-	
-												-	-
-												-	-
-												-	1
20 –												-20	
]													
_												_	
4												_	-
25												-25	-
-												-	
-												-	
-												-	
-												-	1
30													
				N LINES RE	PRESENT THE APPROXI	MATE BOUNDA	ARY LINES BETW	EEN SOIL TY	PES. IN-SITU THE T	RANSITION IV	AY BE (GRADUA	-
	/L (First E						NG STARTED:	May 02 2	024 CAVE IN	DEPTH:			
	/L (Compl /L (Seasor			er)		BORIN COMF	NG PLETED:	May 02 2	D24 HAMME	R TYPE:			
	/L (Stabili:		,	• 1			PMENT: OT GeoProbe	LOGGED Nick Stell	HINKHIIN	G METHOD:			
	•	,			ENV		ITAL BORE						

CLIENT: PROJECT NO.: BORING NO.: SHE													
MTFA Arc		e, Inc.					47:18315-A	OU1-05		1 of 1			LCC.
PROJECT Saddle Cr		p2F\$/	Δ				DRILLER/CON' GSI Mid-Atlant						
SITE LOCA		J I ZLS/	•				doi wild Atlant	iic, iiici		1055	05.010.01	U ATION	Vinni
		k Drive	e, Burto		aryland, 20866					LOSS	JF CIRC	ULATION	<u> </u>
LATITUD	E:			LONGITU	JDE:	STATION:		SURFACE	ELEVATION:	вотт	OM OF	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	CRIPTION OF MAT	FERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-					Topsoil Thickness[7.7.1		-	
-				0.0	(SM/GM) SILTY SA	ND WITH GF	RAVEL/GRAVEL	WITH SAND, br	own, dry			-	
-				0.0								-	
				0.0								-	
_ =				0.0	(SC/GC) CLAYEY SA	AND WITH G	RAVEL/GRAVEL	L WITH SAND, d	ark brown,			_	
5-	1-05			0.0	moist							- 5 –	
†	1-05			0.0							1	-	
-				0.0	(SM/GM) SILTY SA	ND WITH GF	RAVEL/GRAVEL	WITH SAND, re	ddish brown			-	
				0.0	tan, moist							-	
-				0.0								-	
10-				0.0	(SC) CLAYEY SAND	dark brown	n moist			//// <u>*</u>		-10 -	
-				0.0	(SC) CLATET SAIND	, uark browi	i, illuist				1	-	
				0.0							1	-	
				0.0							1	_	
-				0.0	(SM/GM) SILTY SA	ND WITH GF	RAVEL/GRAVEL	WITH SAND, re	ddish brown	, ///3	1	-	
15-				0.0	moist	FND	OF BORING AT	Γ 15 FT		—/:./··/		-15 -	
_						LND	or borting A					-	
-												-	
												-	
-												_	
20 –												-2 0 –	
												_	
												_	
												_	
												-	
25 –												-25 –	
=												_	
												_	
												-	
												-	
30													
	THE S	TRATIF	ICATIO	N LINES RE	I PRESENT THE APPROXI	MATE BOUND	ARY LINES BETW	EEN SOIL TYPES. II	N-SITU THE TR	ANSITION MA	Y BE G	RADUAL	
	L (First E						NG STARTED:	May 02 2024	CAVE IN	DEPTH:			
	L (Compl L (Seasor			er)		BORII COM	NG PLETED:	May 02 2024	HAMME	R TYPE:			
	L (Stabili:		,	• /			PMENT:	LOGGED BY:	DRILLING	METHOD:			
	_ (5.00111				ENVI		OT GeoProbe	Nick Stella HOLE LOG					

### ### ##############################	CLIENT:							PROJECT NO.:			SHEET:				
Solid Adamst, Inc.			e, Inc.					47:18315-A DRILLER/CON		i	1 of 1				EC9
14709 SAND			P2ESA	4				1							
1979 1979												LOSS	OF CIRC	ULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			k Drive	e, Burto			CTATION:		CLIDEACI	E ELEVATION:					
10	LAITIO	JE.		Γ	LONGITO	JUE.	STATION.		SURFACI	E ELEVATION.		BOTT	ом оғ	CASING	
1.06	DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
The Stratification Links Represent the approximate Boundary Links Between Soil, Types, IN-Struthe Transition May Be Gradual. May 1206 May 220244 May 220	_					Topsoil Thickness	6.00"]				<u> </u>			-	
10	=					(SP/GP) SAND WIT	TH GRAVEL/G	GRAVEL WITH S	AND, reddish	brown, dry				-	
1-06	-					(SM) SILTY SAND	hrown to tan	moist			<u>: :</u>	:: 672 		-	
10	4					(SIVI) SIEIT SAIVE,	brown to tar	, 1110131						-	
10- 10- 10- 10- 10- 10- 10- 10- 10- 10-															
10- 10- 10- 10- 10- 10- 10- 10- 10- 10-	3													-5 -	
1.06	_													-	
1-06 0.0	4													_	
1-06	=				0.0									-	
1-06	10				0.0									-10 -	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES, IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 13.00 BORING WW (Completion) BORING WW (Sasaonal High Water) W (Sasaonal High Water) W (Sasaonal High Water) W (Sasaonal High Water) D (SGED BY: Nick Stella D (RILLING METHOD):	1				0.0									_	
20 - 0.0 END OF BORING AT 15 FT 20 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1	4				0.0	(SM) SILTY SAND,	tan/ gray, mo	oist to saturate	d					_	
END OF BORING AT 15 FT END OF BORING AT 15 FT -15- 20- 30	1	1-06			0.0										
25 -	-				0.0									_	
25	15				0.0		END (OF BORING AT	15 FT			1111		-15	
25	=													-	
25	-													-	
25	=													-	
25														-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	20 –													-20 -	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	=													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	=													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:]													_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	25													25 -	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 13.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOR EQUIPMENT: FOR EQUIPMENT: Nick Stella DRILLING METHOD:	25													-20	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 13.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOR EQUIPMENT: FOR EQUIPMENT: Nick Stella DRILLING METHOD:	4													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 13.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOR EQUIPMENT: FOR EQUIPMENT: Nick Stella DRILLING METHOD:	=													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 13.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOR EQUIPMENT: FOR EQUIPMENT: Nick Stella DRILLING METHOD:	_													_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) 13.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOR EQUIPMENT: FOR EQUIPMENT: Nick Stella DRILLING METHOD:	30														
✓ WL (First Encountered) 13.00 BORING STARTED: May 02 2024 CAVE IN DEPTH: ✓ WL (Completion) BORING COMPLETED: May 02 2024 HAMMER TYPE: ✓ WL (Seasonal High Water) EQUIPMENT: Nick Stella LOGGED BY: Nick Stella DRILLING METHOD:	-	THF 9	TRATIF	CATIO	N LINES RE	PRESENT THE APPROXI	MATE BOUND	ARY LINES BETWI	EEN SOII TYPFS	. IN-SITU THE TE	RANSITIO	N MA	 Y BF (=	RADUAI	
WL (Seasonal High Water) COMPLETED: EQUIPMENT: FRAZEDT GeoProbe May 02 2024 HAMMER TYPE: DRILLING METHOD:	∇ W														
WL (Stabilized) EQUIPMENT: LOGGED BY: DRILLING METHOD: Nick Stella DRILLING METHOD:									May 02 2024	НАММЕ	R TYPE:				
WE (Stabilized) /822D1 GeoProbe Nick Stella				gn Wat	er)					DDILLING	SIMETLI	JD:			
FINALIMANIENTO EN LIKEBLUE IL US	<u> </u>	/L (Stabili:	zed)			FAI\ /				DIVILLING	۱۸۱⊏ ا ⊔۱	JD.			

CLIENT:							PROJECT NO.:		NO.:	SHEET:			
	rchitecture T NAME:	e, Inc.					47:18315-A DRILLER/CON	OU1-07		1 of 1			EC9
	reek Drive	e P2ES/	4				GSI Mid-Atlant						
SITE LOC	CATION:									10	SS OF CIRC	CULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		k Drive	e, Burto		laryland, 20866	CTATIONI		CLIDEACE	ELEVATION:				
LATITUI	JE:		ı	LONGIT	JDE:	STATION:		SURFACE	ELEVATION:	BO	OTTOM OF	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
					Topsoil Thickness					7: 7:	•		
7				0.0	(SM/GM) SILTY SA	ND WITH GR	AVEL/GRAVEL	WITH SAND, b	rown, dry		*	-	-
7				0.0							•	-	
3				0.0							•	-	
5-				0.0							•	-5-	
3				0.0	(SC/GC) CLAYEY SA	AND WITH GI	RAVFI /GRAVFI	WITH SAND.	lark brown/	/: /: ; ; 		-5	
_				0.0	reddish brown, m				,			_	
				0.0									
=				0.0								-	
10-				0.0	(SM) SILTY SAND,	reddish brow	/n/ tan, moist					-10	
_				0.0								-	-
4				0.0								_	-
4				0.0								_	-
4				0.0								-	-
15				0.0		END C	OF BORING AT	15 FT			1	-15	-
4							2007					_	
												-	
-												-	
-												-	
20 –												-20	-
4												-	
-												-	
												-	-
-												-	-
25 –												-25	-
7												-	-
7												-	-
7												-	-
												-	-
30													
				N LINES RE	PRESENT THE APPROX	MATE BOUNDA	ARY LINES BETWI	EEN SOIL TYPES.	IN-SITU THE TR	RANSITION N	/IAY BE	GRADUAI	=
	/L (First E /L (Compl						NG STARTED:	May 02 2024	CAVE IN	DEPTH:			
	/L (Compi			er)			PLETED:	May 02 2024	HAMME	R TYPE:			
	` /L (Stabili:			•			PMENT: T GeoProbe	LOGGED BY: Nick Stella	DRILLING	METHOD	:		
	-	-			ENV		ITAL BORE						

CLIENT:							PROJECT NO.:		NO.:	SHEET:			
	rchitecture T NAME:						47:18315-A DRILLER/CON	OU1-08		1 of 1			FC6
	reek Drive		A				GSI Mid-Atlant						
SITE LOC							1			LOS	S OF CIRC	CULATION)100 <i>x</i>)
14709 Sa		ek Drive	e, Burto	LONGIT	laryland, 20866	STATION:		SLIDEVCE	ELEVATION:				
LAITTUL	JE.			LONGIT	JDE.	STATION.		JUNFACE	ELEVATION.	BC	ттом оғ	CASING	
ОЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	CRIPTION OF MA	ΓERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness[7: 7:1	•		
]				0.0	(SM/GM) SILTY SA	IND WITH G	RAVEL/GRAVEL	WITH SAND, br	own, dry		•		
				0.0							•		
				0.0						///	•	_	
5-				0.0	(SM) SILTY SAND,	tan, dry				<u> </u>		-5	
				0.0	(SC/GC) CLAYEY SA		GRAVEL/GRAVE	L WITH SAND, d	ark brown,	1111		j _	1
				0.0	moist (SM/GM) SILTY SA	ND WITH G	DAVEL/CDAVEL	WITH CAND ro	ddish brown	/(///	•	-	
				0.0	moist			WIIII SAND, IE	duisii biowii		Ì	-	
				0.0	(SM) SILTY SAND,	tan, moist to	o saturated					-	
10				0.0								-10	
				0.0								-	
_				0.0								-	_
-				0.0								-	
	1-08			0.0								-	
15				0.0								-15-	1
				0.0								-	-
				0.0								-	-
-				0.0		SAMPL	ER REFUSAL	AT 18 FT		1:14 1		-	
-												-	
20 –												-20	1
]													
												_	
25												-25	1
													-
												-	
												-	
												-	1
30													1
	THE S	STRATIF	ICATIO	N LINES RE	L PRESENT THE APPROXI	MATE BOUND	DARY LINES BETW	EEN SOIL TYPES. I	N-SITU THE TR	ANSITION N	AY BE (GRADUA	L
∇ w	/L (First E	ncoun	tered)		14.00	BORI	ING STARTED:	May 02 2024	CAVE IN	DEPTH:			
	/L (Comp					BORI		May 02 2024	HAMMEI	R TYPE:			
	/L (Seasoi		gh Wat	er)			IPLETED: IPMENT:	LOGGED BY:					
₩ W	/L (Stabili	zed)				78221	DT GeoProbe	Nick Stella	DKILLING	METHOD:			
					ENV	KONME	NTAL BORE	HULE LOG					

CLIENT:							PROJECT NO.:		NO.:	SHEET:			
	rchitecture T NAME:	e, Inc.					47:18315-A DRILLER/CON	OU1-09		1 of 1			LCC
	reek Drive	e P2ES/	4				GSI Mid-Atlant						
SITE LO								•		10	OSS OF CIT	RCULATION)100 <i>i</i>)
		k Drive	e, Burto		laryland, 20866	CTATION		CLIDEACE	FLEVATION				
LATITUI	JE:			LONGIT	JDE:	STATION:		SURFACE	ELEVATION:	E	воттом о	OF CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	CRIPTION OF MAT	ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness								-
-				0.0	(SM) SILTY SAND,	tan, moist							7
=				0.0									7
3				0.0									_
_				0.0								-5	-
5-												-5	7
_				0.0	(SM) SILTY SAND,	brown, mois	t						-
-				0.0									7
				0.0									-
10 –				0.0								-10	_
				0.0	(SM/GM) SILTY SA	ND WITH GF	RAVEL/GRAVEL	WITH SAND, b	rown, moist	///		-10	_
_				0.0						\			_
_				0.0	(SM) SILTY SAND,	tan. moist to	saturated			V::/: y	1		_
_				0.0		,							_
15 –				0.0								-15	-
13				0.0								-13	-
_				0.0									}
_				0.0									_
_				0.0									_
20-	1-09			0.0								-20	3
20				0.0		END (OF BORING AT	20 FT				-20	-
7													7
7													7
-													7
25 –												-25	-
25												-23	_
-													-
=													7
7													7
30													7
30													
				N LINES RE	PRESENT THE APPROXI						May be	GRADUA	L
	/L (First E /L (Compl				15.00	BORII BORII	NG STARTED:	May 02 2024	CAVE IN	DEPTH:			
	/L (Seasor			 er)			NG PLETED:	May 02 2024	HAMMEI	R TYPE:			
	/L (Stabili:		· -	•			PMENT: OT GeoProbe	LOGGED BY: Nick Stella	DRILLING	METHOD): 	_	
	,	,			ENV		ITAL BOREI						

CLIENT:							PROJECT NO.:	I	RING NO.:	SHEET				
	rchitecture T NAME:						47:18315-A DRILLER/CON		1-10	1 of 1				EC9
	Creek Drive		4				GSI Mid-Atlant							
SITE LOC		de Deixe	o Durt	navilla M	laryland, 20866						LOSS (OF CIRC	ULATION	\(\)
LATITU		K DIIV	e, Burtt	LONGIT		STATION:		SURF	FACE ELEVATION:	:	BOTT	OM OF	CASING	-
)er	(NE)	\widehat{z}	9								LS	(F.	
DEPTH (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ΓERIAL				WATER LEVELS	elevation (ft)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness[(SM/GM) SILTY SA		RAVEL/GRAVEL	WITH SAN	ID, brown, dry				-	
+	1-10			0.0	(SM) SILTY SAND,								-	
=				0.0	(3111) 31211 37112)	reddisii biovi	in, ary to satur	acca					_	
				0.0									_	
5-				0.0									- 5 -	
_				0.0									-	
-				0.0									-	
-				0.0									_	
10				0.0									-10	
-				0.0									-	
3				0.0										
-				0.0									-	
15				0.0		END C	OF BORING AT	Г 15 FT		:			-15	
													_	
-													-	
=													-	
20													-20 -	
-													 -	
=													_	
=													_	
-													-	
25 –													-2 5 -	
=													-	
-													-	
-													_	
30														
				N LINES RE	PRESENT THE APPROXI	MATE BOUNDA	ARY LINES BETWI	EEN SOIL TY	PES. IN-SITU THE T	RANSITI	ON MAY	Y BE C	RADUAL	
	/L (First E						NG STARTED:	May 02 2	024 CAVE IN	I DEPTH	:			
	/L (Comp /L (Seaso			er)		BORIN COMF	NG PLETED:	May 02 2	024 HAMMI	ER TYPE	:			
	/L (Stabili		,,, vval			EQUIF	PMENT: OT GeoProbe	LOGGED Nick Stell	IIIBIIII	IG METH	HOD:			
					ENV		ITAL BORE							

REDICT NAME: SIDELLERICOTES CORRECTORS SIDELLERICOTES SIDE	CLIENT:							PROJECT NO.:		NO.:	SHEET:				
Statistic Control Statistic Control Statistic			e, Inc.					47:18315-A	OU2-01		1 of 1				EC 9
### APPRO SADIE CORE FOR PART OF BUTCONFIELD Many fand , 20866 #### APPRO SADIE CORE FOR PART OF BUTCONFIELD Many fand , 20866 #### APPRO SADIE CORE FLEVATION SURFACE FLEVATION #### APPRO SADIE CORE FLEVATION SURFACE FLEVATION #### APPRO SADIE CORE FLEVATION SURFACE FLEVATION #### APPRO SADIE CORE FLEVATION #### APPROVIATION ##### APPROVIATION ###### APPROVIATION ###### APPROVIATION ###### APPROVIATION ####### APPROVIATION ####### APPROVIATION ######### APPROVIATION ###################################			P2ESA	4				1							
10 15 16 17 17 17 17 17 17 17	SITE LO	CATION:						1			L	.oss o	F CIRCU	JLATION)100 <i>\</i>)
Fig.			k Drive	e, Burto			CTATIONI		STIDENCE	ELEVATION:					
The STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL Value	LAIIIUI	DE.		Γ	LONGITO	JUE.	STATION.		SURFACE	ELEVATION.		ВОТТО	OM OF	CASING	
10	DEPTH (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
10											/}			-	
2-01	7					(ML) SILT, brown,	moist							-	
2-01	-													-	
2-01	_													=	
2-01 0	5-													-5 <i>-</i>	
2-01 0.0 0.0 (ML) SILT, brown, wet	-													_	
2-01 0.0 (ML) SILTY CLAY, tan/ white, moist	-				0.0									_	
10	-				0.0									_	
18	-	2-01			0.0	(ML) SILT, brown,	wet							_	
20	10					(CL/ML) SILTY CLA	Y, tan/ white	, moist				17		-10 -	
END OF BORING AT 15 FT 20 25 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING WL (Completion) BORING WW (Completion) BORING COMPLETED: May 01 2024 HAMMER TYPE: COMPLETED: May 01 2024 HAMMER TYPE: COMPLETED: May 01 2024 HAMMER TYPE: COMPLETED: May 01 2024 DOUBLETON: May 01 2024 HAMMER TYPE: COMPLETED: May 01 2024 DOUBLETON: May 01 2024 DOUB	4													-	
END OF BORING AT 15 FT 20 -	=											ľA		-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL ▼ WL (First Encountered) BORING STARTED: Way 01 2024 WL (Completion) BORING STARTED: Way 01 2024 HAMMER TYPE: EQUIPMENT: FOUR PMENT: COMPLETED: COMPLETE	-											ľД		-	
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	15													-15 -	
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -					0.0		END C	OF BORING AT	15 FT					-10	
25— 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: WL (Completion) BORING COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: DRILLING METHOD:	_													_	
25— 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: WL (Completion) BORING COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: DRILLING METHOD:	_													_	
25— 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: WL (Completion) BORING COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: COMPLETED: DRILLING METHOD:	- 1													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	20													-20	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:														_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	-													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	=													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: WL (Completion) BORING COMPLETED: COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	25													-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: HAMMER TYPE: COMPLETED: EQUIPMENT: EQUIPMENT: FOR DEPTH: LOGGED BY: Nick Stella DRILLING METHOD:	25 -													-25 ⁻	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: HAMMER TYPE: COMPLETED: EQUIPMENT: EQUIPMENT: FOR DEPTH: LOGGED BY: Nick Stella DRILLING METHOD:	_													_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROVINCE STARTED: LOGGED BY: Nick Stella DRILLING METHOD:	4													_	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: HAMMER TYPE: COMPLETED: EQUIPMENT: EQUIPMENT: FOR DEPTH: LOGGED BY: Nick Stella DRILLING METHOD:	=													_	
✓ WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: ✓ WL (Completion) BORING COMPLETED: May 01 2024 HAMMER TYPE: ✓ WL (Seasonal High Water) EQUIPMENT: ROUPMENT: Nick Stella LOGGED BY: Nick Stella DRILLING METHOD:	30														
✓ WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: ✓ WL (Completion) BORING COMPLETED: May 01 2024 HAMMER TYPE: ✓ WL (Seasonal High Water) EQUIPMENT: ROUPMENT: Nick Stella LOGGED BY: Nick Stella DRILLING METHOD:		THE S	TRATIF	L ICATIOI	N LINES RE	I PRESENT THE APPROXI	MATE BOUNDA	ARY LINES BETWI	EEN SOIL TYPES. II	N-SITU THE TR	ANSITION	MAY	BE G	RADUAL	
WL (Seasonal High Water) COMPLETED: EQUIPMENT: 7822DT GeoProbe Nick Stella HAMMER TYPE: HAMMER TYPE: DRILLING METHOD:	∇ W														
 ✓ WL (Stabilized) EQUIPMENT: LOGGED BY: Nick Stella DRILLING METHOD: 									May 01 2024	HAMMEI	R TYPE:				
/822DT Geoprobe Nick Stella				sh Wat	er)		EQUIF	PMENT:		DRILLING	METUO	D·			
ENVIRONMENTAL BOREHOLE LOG	<u> </u>	/L (Stabili:	zed)			ENI\/I				DIVILLING	I IVIL I I I U	<i>ن</i> .			

CLIENT:							PROJECT NO.:	BORING	NO.:	SHEET:				
	chitecture T NAME:	•					47:18315-A DRILLER/CONT	OU2-02		1 of 1				EC9
	reek Driv		Δ.				GSI Mid-Atlanti							
SITE LOC 14709 S a		ek Drive	e, Burto		laryland, 20866						LOSS C	OF CIRC	ULATION	<u> </u>
LATITUE	DE:		ı	LONGITU	JDE:	STATION:		SURFACE	ELEVATION:		BOTT	ом оғ	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MATE	ERIAL				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-				0.0	Topsoil Thickness					/Ĭ			-	
]				0.0	(ML) SILT, brown,									
-				0.0	(SP/GP) SAND WI	TH GRAVEL/G	GRAVEL WITH SA	AND, brown/ t	an, dry		<u> </u>		-	
				0.0							1000		-	
5				0.0									- 5 -	
-				0.0	(ML) SILT, tan, mo	ist							-	
				0.0									_	
-				0.0	(ML) SILT, tan, we	t						~~	-	-
-				0.0									-	
10-				0.0									-10	
				0.0	(CL/ML) SILTY CLA	Y, tan/ white	, moist						-	
-				0.0									-	
				0.0									-	
15-				0.0		FND (OF BORING AT	15 FT					-15 -	
=						LIND	DI BORING AI	1311					-	
													-	
_													-	
-													-	-
20 –													-20	-
-													-	
													-	
-													-	
25 –													-25 -	-
=													-	-
													-	
_													-	
-													-	1
30														
				N LINES RE	PRESENT THE APPROXI							/ BE G	RADUAL	=
	'L (First E 'L (Comp				8.00	BORIN	NG STARTED:	May 01 2024	CAVE IN					
	'L (Seaso			er)		COMI	PLETED:	May 01 2024	HAMMEI	R TYPE:				
	` ′L (Stabili			•			PMENT: OT GeoProbe	LOGGED BY: Nick Stella	DRILLING	METH	OD:			
		-			ENV		ITAL BOREH							

CLIENT:							PROJECT NO.:			SHEET	:			
	rchitecture T NAME:	e, Inc.					47:18315-A DRILLER/CON	OU2-03	<u> </u>	1 of 1				FC6
	Creek Drive	P2ESA	4				GSI Mid-Atlant							
SITE LO	CATION:						1				LOSS	OF CIRC	ULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
LATITUI		k Drive	e, Burto	LONGITU	laryland, 20866	STATION:		CLIDEACE	E ELEVATION:					
LAIIIUI	DE.			LONGIT	JUE.	STATION.		SURFACE	ELEVATION.		BOTT	ом оғ	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
-					NO RECOVERY								-	
7				0.0									-	
-				0.0									-	1
_				0.0									-	
5-				0.0									-5 -	
				0.0	(SC/GC) CLAYEY SA	AND WITH G	RAVEL/GRAVEL	. WITH SAND,	brown, moist		3		-5	
_				0.0									-	-
-				0.0	(SM) SILTY SAND,	tan, moist							-	-
4				0.0									-	-
10				0.0	(SM) SILTY SAND,	tan saturata	d					$\overline{\nabla}$	-10	-
1	2-03			0.0	(SIVI) SILIT SAIND,	iaii, saturate	u						-	
4				0.0	(CL/ML) SILTY CLA	Y, tan, moist							-	
-				0.0									-	
-				0.0							1111/		-	
15				0.0		END (OF BORING AT	15 FT			1111/2		-15	
-													-	
-													-	
-													-	
4													-	-
20													-20	-
=													-	-
4													-	-
-													-	
25 –													-25 -	
25 -													-25	
_													-	
_													-	
_														
30													-	
50	TUE	TRATIF	ICATIO	A I INIEC DE	PRESENT THE APPROXI	MATE BOLIND	ARVIINES DETM	EEN SOIL TYDES	INI-SITI I THE TE	RANISITI	JN 144	/ RE C	RADIIAI	
∇ W	/L (First E			A CHAIS VE	10.00		NG STARTED:	May 01 2024				ו טב כ	MADUAL	=
▼ W	/L (Comp	etion)				BORIN	NG	May 01 2024						
▼ M	/L (Seasoi	nal Hig	sh Wat	er)			PLETED: PMENT:	LOGGED BY:						
▼ W	/L (Stabili	zed)				7822D	T GeoProbe	Nick Stella	DRILLING	3 METH	IOD:			
					ENVI	RONMEN	ITAL BORE	HOLE LOG						

### ### ### ### ### ### ### ### ### ##	CLIENT:							PROJECT NO.:		NO.:	SHEET:			
Sadial Creek Drive PSEA 1709 Sadial Creek Drive But not will be completed by the part of the part			e, Inc.					47:18315-A DRILLER/CON	OU2-04		1 of 1			EC9
### APPROVINCE CONCILIUDE: STATION STATE CONCILIUDE: STATION			P2ES/	4										
1970 1970	SITE LO	CATION:						1			109	SS OF CIE	RCULATION	2100%
			k Drive	e, Burto			CTATION.		CLIDEACE	ELEVATION.				
10 2-04 0.0 (SM/GM) SILTY SAND WITH GRAVEL/GRAVEL WITH SAND, tan, moist 0.0 (SM/GM) SILTY SAND WITH GRAVEL/GRAVEL WITH SAND, tan, moist 0.0 (SM/GM) SILTY SAND WITH GRAVEL/GRAVEL WITH SAND, tan, moist 0.0 0.0 (SM/GM) SILTY SAND WITH GRAVEL/GRAVEL WITH SAND, tan, moist 0.0 0.0 (ML/CL) CLAYEY SILT, tan/ white, wet 0.0	LAIIIUI	DE:			LONGII	UDE:	STATION:		SURFACE	ELEVATION:	BC	ттом с	OF CASING	
0.0	DEPTH (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
10	-										/}//////////////////////////////////			-
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-							`DA\/EL\A/ITLLC	AND ton modifi		1111		┤	-
10	=					(SP/GP) SAND WIT	H GRAVEL/G	KAVEL WIIT S	AND, tan, mois	ol.			-	-
10	=) 31	-	- -
2-2-04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	=											\$1	-	-
2-04	5-												-5	_
2-04	7											3	-	-
2-04 0.0 0.0 (ML/CL) CLAYEY SILT, tan/ white, wet 15	_				0.0	(SM/GM) SILTY SA	ND WITH GR	RAVEL/GRAVEL	WITH SAND, to	an, moist	1//	•	1 .	-
10	=				0.0							•	-	-
0.0	=	2.04			0.0							-	-	=
20 0.0 0.0 END OF BORING AT 15 FT 20 0 0.0 0.0 END OF BORING AT 15 FT 20 0 0.0 END OF BORING AT 1	10	2 04				(ML/CL) CLAYEY S	LT, tan/ whit	e, wet				/	-10 ·	_
END OF BORING AT 15 FT 20 15 - 15 -	=											/}	-	-
2015	7												-	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Way 01 2024 May 01 2024 May 01 2024 HAMMER TYPE: EQUIPMENT: W WL (Seasonal High Water) W WL (Seasonal High Water) FOUR MAY 01 2024 HAMMER TYPE: PRILLING METHOD: PRILLING METHOD: PRILLING METHOD:	4				0.0								-	-
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	-				0.0							Ά	-	-
25	15				0.0		END (OF BORING AT	15 FT			1	-15	-
25	-												-	-
25	-												-	_
25	-												-	-
25	-												-	_
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	20 –												-20	_
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:													-	_
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	-												-	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	-												-	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FQUIPMENT: 7822DT GeoProbe Nick Stella DRILLING METHOD:	-												-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: DRILLING METHOD: DRILLING METHOD:	25												-25	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: DRILLING METHOD: DRILLING METHOD:	-												-	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: DRILLING METHOD: DRILLING METHOD:	4												-	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: DRILLING METHOD: DRILLING METHOD:	-												-	-
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: COMPLETED: COMPLETED: EQUIPMENT: FOUR PROPERTY OF COMPLETED: DRILLING METHOD: DRILLING METHOD:	4													1
✓ WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: ✓ WL (Completion) BORING COMPLETED: May 01 2024 HAMMER TYPE: ✓ WL (Seasonal High Water) EQUIPMENT: Nick Stella LOGGED BY: Nick Stella DRILLING METHOD:	30												-	1
✓ WL (First Encountered) BORING STARTED: May 01 2024 CAVE IN DEPTH: ✓ WL (Completion) BORING COMPLETED: May 01 2024 HAMMER TYPE: ✓ WL (Seasonal High Water) EQUIPMENT: Nick Stella LOGGED BY: Nick Stella DRILLING METHOD:		THE S	TRATIF	ICATIO	N LINES RE	L EPRESENT THE APPROXI	MATE BOUND	ARY LINES BETWI	EEN SOIL TYPES.	IN-SITU THE TR	 ANSITION M	L 1AY BE	GRADUA	L
WL (Seasonal High Water) COMPLETED: EQUIPMENT: FRAZEDT GeoProbe May 01 2024 HAMMER TYPE: DRILLING METHOD:		/L (First E	ncoun [.]	tered)										
WL (Stabilized) EQUIPMENT: LOGGED BY: DRILLING METHOD: Nick Stella DRILLING METHOD:					orl				May 01 2024	HAMMEI	R TYPE:			
WE (Stabilized) /822D1 GeoProbe Nick Stella				;ıı VVdl	C1 <i>j</i>		EQUIF	PMENT:		DRILLING	MFTHOD:			
		ılıdatz) ıv	zea)			ENIV				Dividente				

CLIENT:							PROJECT NO.:		NG NO.:	SHEET:			
	rchitecture T NAME:						47:18315-A DRILLER/CON	OU2-0)5	1 of 1			LCC
	Creek Drive		4				GSI Mid-Atlant						
SITE LO	CATION:							•		105	OF CIRC	CULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		k Drive	e, Burto		laryland, 20866	CTATION		CLIDEA	SE ELEVATION	200			
LATITUI	JE:		ı	LONGIT	UDE:	STATION:		SURFAC	CE ELEVATION:	BO	гтом оғ	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
				0.0	Topsoil Thickness[(SM/GM) SILTY SA		AVEL/GDAVEL	WITH SAND	brown moist		<u> </u>		
	2-05			0.0	(SIVI/GIVI) SILIT SA	IND WITH GR	AVLL/GRAVLL	WIIII SAND,	brown, moist			-	
_				0.0						///	•		
=				0.0						///		-	-
5				0.0						///i	•	-5-	_
				0.0	(0.41) CHT.							-	-
4				0.0	(ML) SILT, tan, mo	IST						_	-
_				0.0								-	
4				0.0								-	
10				0.0								-10	
=				0.0								-	
-				0.0								-	
_				0.0								-	
-				0.0	(ML/CL) CLAYEY S	ILT, tan/ whit	e, wet				#	-	
15				0.0	, , ,		OF BORING AT	15 FT			1	-15	
=												-	
=												-	
_												-	
=												-	-
20 –												-20	-
=												-	-
_												-	-
7												-	-
												-	-
25 -												-25	-
=												-	
=												-	
-												-	
30												<u> </u>	
30		TD	1647:1		DDECENIT THE	NAATE 20:	A DV 1 11:50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		C IN CIT!! = : = =	ANICITIC	A)/ 5=	3045:::	
√ \A	THE S L (First E			n lines re	EPRESENT THE APPROXI						ay BE (∍KADUAI	=
	/L (Comp					BORIN	NG STARTED: NG	May 01 202					
	/L (Seaso			er)		COM	PLETED:	May 01 202		R TYPE:			
	 /L (Stabili			<u> </u>			PMENT: OT GeoProbe	LOGGED BY	r: DRILLING	6 METHOD:			
	-	-			ENV		ITAL BORE		i				

CLIENT:	PROJECT NO.:	BORING NO.:	SHE				
MTFA Architecture, Inc.	47:18315-A	OU2-06	1 of	1			LCC
PROJECT NAME: Saddle Creek Drive P2ESA	DRILLER/CONTRAI GSI Mid-Atlantic, Ir						
SITE LOCATION:	d3i Wild-Atlantic, ii	ic.					
14709 Saddle Creek Drive, Burtonsville, Maryland, 20866				LOSS OF	CIRCL	ILATION	<u> </u>
LATITUDE: LONGITUDE: ST	TATION:	SURFACE ELEVA	ATION:	вотто	M OF (CASING	
Sample Number SAMPLE DIST. (IN) RECOVERY (IN) PID READING	DESCRIPTION OF MATERIA	AL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
2-06 0.0 0.0 0.0 (CL/ML) SILT, tan, moist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	an/ gray, wet					-5-	
15 - 0.0 (CL/GC) SANDY LEAN moist	END OF BORING AT 15		AND, tan,	10000		-15 - -15 - - -	
20-						-20 - -20 - - 	
-						- - -	
30							
THE STRATIFICATION LINES REPRESENT THE APPROXIMA	TE BOUNDARY LINES BETWEEN	SOIL TYPES. IN-SITU	J THE TRANSI	TION MAY	BE G	RADUAL	
✓ WL (First Encountered)		ay 01 2024 C.	AVE IN DEPT	ГН:			
▼ WL (Completion)▼ WL (Seasonal High Water)	BORING M	ay 01 2024 H	AMMER TYI	PE:			
▼ WL (Stabilized)		OGGED BY:	RILLING ME	THOD:			
	7822DT GeoProbe Ni NMENTAL BOREHO	ск Stella					

CLIENT:							PROJECT NO.:		NO.:	SHEET:				
	rchitecture T NAME:						47:18315-A DRILLER/CON	OU2-07		1 of 1				EC 9
	Creek Drive		4				GSI Mid-Atlant							
SITE LO							I .	•			OSS OF	CIRCI	JLATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		k Drive	e, Burto		laryland, 20866	CTATION		CUREAGE	ELEVATION.					
LATITUI	JE:		ı	LONGIT	UDE:	STATION:		SURFACE	ELEVATION:		воттог	M OF	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL				WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
					Topsoil Thickness						77		_	
7				0.0	(ML/CL) CLAYEY S	ILT, brown, m	oist				Y/L		_	
7				0.0							И		_	
=				0.0							\mathcal{U}		_	
=				0.0							V_{\perp}		_	
5-				0.0	(SP/GP) SAND WIT	ΓΗ GRAVEL/G	RAVEL WITH S	AND, brown, d	ry				- 5 –	
7				0.0									-	
7				0.0									_	
7				0.0									-	
				0.0	(CL) LEAN CLAY, ta	n/ white, mo	oist			17/	7		-	
10 –				0.0						\//			-10 -	
_				0.0						1//			_	
_				0.0									_	
-				0.0						[//	//		_	
†	2-07			0.0	(ML/CL) CLAYEY S	ILT, tan, mois	t				1/1			
15 –				0.0		END (OF BORING AT	15 FT					-15 -	
_													-	
_													-	
-													-	
-													-	
20 –													-20 –	
=													-	
7													-	
_													_	
25													-	
25 –													-25 –	
=													-	
=													_	
=													_	
7													-	
30														
				N LINES RE	EPRESENT THE APPROXI	MATE BOUNDA	ARY LINES BETW	EEN SOIL TYPES. I	N-SITU THE TR	ANSITION	MAY	BE G	RADUAL	
	/L (First E /L (Comp						NG STARTED:	May 01 2024	CAVE IN	DEPTH:				
	/L (Seaso			er)			PLETED:	May 01 2024	HAMME	R TYPE:				
▼ W	/L (Stabili	zed)					PMENT: OT GeoProbe	LOGGED BY: Nick Stella	DRILLING	METHO	D:			
					ENV		ITAL BORE							

CLIENT:							PROJECT NO.:			SHEET:			
	rchitecture T NAME:	e, Inc.					47:18315-A DRILLER/CON	OU2-08		1 of 1			FC6
	reek Drive	e P2ES/	4				GSI Mid-Atlant						
SITE LOC	CATION:							•		105	OF CIRC	CULATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		k Drive	e, Burto		laryland, 20866	CTATION		CLIDEACE	. ELEVATION	200.			
LATITUI	JE:		ı	LONGIT	JDE:	STATION:		SURFACE	ELEVATION:	BO	ТОМ ОБ	CASING	
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING		DESC	RIPTION OF MAT	ERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
_				0.0	Topsoil Thickness[SDAVEL MUTLL C	AND brance	J., .			-	
_				0.0	(SP/GP) SAND WIT	H GRAVEL/G	KAVEL WITH S	AND, brown, (агу) }	_	
_				0.0						2	\$	-	-
=				0.0						1	3	-	-
5-				0.0	(ML) SILT, tan, mo	ist						-5-	_
_				0.0	(CII) FAT CLAV to	/					<u> </u>	-	-
				0.0	(CH) FAT CLAY, tan	/ rea, moist						_	-
4				0.0								_	-
4				0.0								_	1
10				0.0	(ML) SILT, tan/ gra	y, wet						-10	
_				0.0								-	
-				0.0								-	
-				0.0								-	
-				0.0								-	-
15				0.0		END C	OF BORING AT	15 FT				-15	-
-												-	-
7												-	-
-												-	
-												-	
20 –												-20	
3												-	
_													
												-	
25 –												-25 -	-
												-	-
=												-	-
_												-	-
4												_	
30												-	
	THE S	TRATIF	L ICATIOI	N LINES RE	 EPRESENT THE APPROXI	MATE BOUNDA	ARY LINES BETWI	EEN SOIL TYPES.	IN-SITU THE TR	ANSITION M	AY BE (I GRADUAI	
∇ W	/L (First E						NG STARTED:	May 01 2024	CAVE IN				
	/L (Comp					BORIN		May 01 2024	HAMMEI	R TYPE:			
	/L (Seaso		sh Wat	er)			PLETED: PMENT:	LOGGED BY:	DDULING	METHOD			
▼ W	/L (Stabili	zed)				7822D	T GeoProbe	Nick Stella	DKILLING	METHOD:			
					ENVI	KONMEN	ITAL BORE	HOLE LOG					

CLIENT:							PROJECT NO.:			SHEET:				
MTFA Architecture, Inc. 47:18315-A OU2-09 1 of 3 PROJECT NAME: DRILLER/CONTRACTOR:										1 of 1			EC?	
	reek Drive	e P2ES/	Ą				GSI Mid-Atlant							
SITE LOC 14709 S a		k Drive	e, Burto	onsville, N	laryland, 20866		Con title Account of the			LOSS OF CIRCULATION			<u> </u>	
LATITUDE: LONGITUDE:						STATION:	FION: SURFACE ELEVATION:			ВОТ	CASING	-		
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING	DESCRIPTION OF MATERIAL						WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*	
-				0.0	Topsoil Thickness[2.00"] (SM/GM) SILTY SAND WITH GRAVEL/GRAVEL WITH SAND, brown, moist							-		
				0.0	(CH) FAT CLAY, tan/ red, moist									
-				0.0								-		
5-				0.0								-5-		
				0.0								_		
				0.0	(ML/CL) CLAYEY SI	LT, tan/ gray	, moist							
				0.0								-		
10-	2-09			0.0								-10		
				0.0								-		
-				0.0								-		
				0.0								-		
15-				0.0		END (OF BORING AT	T 15 ET		[/		-15		
						END	OF BORING A	1 15 F 1				-		
_												-		
												-		
20 -												-20 -		
												-		
-												-		
												-		
25												-25		
-												-		
												-		
												-		
30											-	-		
	THE S	TRATIF	ICATIO	N LINES RE	PRESENT THE APPROXI	MATE BOUND	ARY LINES BETW	EEN SOIL TYPES	. IN-SITU THE TR	RANSITION MA	Y BE C	- GRADUAL	-	
□ WL (First Encountered)							NG STARTED:	May 01 2024	CAVE IN					
▼ WL (Completion)							NG PLETED:	May 01 2024	НАММЕ	MER TYPE:				
▼ WL (Seasonal High Water)▼ WL (Stabilized)							PMENT:	LOGGED BY:	DRILLING	G METHOD:				
	▼ WL (Stabilized) 7822DT GeoProbe Nick Stella DRILLING METHOD: ENVIRONMENTAL BOREHOLE LOG DRILLING METHOD: DRILLING													

CLIENT:										SHEET:				
MTFA Architecture, Inc. 47:18315-A PROJECT NAME: DRILLER/CONTRACTO									.0	1 of 1				EC 9
	Creek Drive	P2ESA	4				GSI Mid-Atlant							
SITE LO	CATION:						os. ma radiale, me			LOSS OF CIRCULATION				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
LATITUI		k Drive	e, Burto	nsville, M LONGITU	laryland, 20866	STATION:		CLIDEA	C					
LAITIUI	DE:			LONGIT	JUE:	STATION:	TION: SURFACE ELEVATION:			BOTTOM OF CASING				
DЕРТН (FT)	Sample Number	SAMPLE DIST. (IN)	RECOVERY (IN)	PID READING	DESCRIPTION OF MATERIAL							WATER LEVELS	ELEVATION (FT)	BLOWS/6" (N - Value)*
10-	2-10			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(SM/GM) SILTY SA moist (ML) SILT, contains	ND WITH GR			brown/ tan,		7-10-10-10-10-10-10-10-10-10-10-10-10-10-		-10 - -20 -	
30														
	THE	TRATIC	ICATIO	ALLINES DE	DRESENT THE ADDROVE	MATE BOLIND	VBA LIVIEC DET/VI	EEN SOIL TVD	S INI_SITH THE TO	SVICILION	NAN	BE C	RADIIAI	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE ✓ WL (First Encountered)							ARY LINES BETWI	May 01 202						
▼ WL (Completion)							NG STARTED.							
▼ WL (Seasonal High Water)						СОМЕ	PLETED: PMENT:	May 01 202	γ·	ER TYPE:				
▼ WL (Stabilized)							T GeoProbe	Nick Stella	DRILLING	G METHOD:				
					ENV	RONMEN	ITAL BORE	HOLE LOG						

Attachment B

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

08 May 2024

Nick Stella ECS-Baltimore 1340 Charwood Rd, Suite A Baltimore, MD 21076

RE: Saddle Creek

Enclosed are the results of analyses for samples received by the laboratory on 05/01/24 16:05.

Maryland Spectral Services, Inc. is a TNI 2016 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2016 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2016 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rabecka Koons

Quality Assurance Officer

lakecka Koms

05/01/24 14:15

Project: Saddle Creek

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
OU-2A		4050124-01	Soil	05/01/24 15:00	05/01/24 16:05
OU-2B		4050124-02	Soil	05/01/24 15:05	05/01/24 16:05
OU-2C		4050124-03	Soil	05/01/24 15:10	05/01/24 16:05
OU-2D		4050124-04	Soil	05/01/24 15:15	05/01/24 16:05
2-01		4050124-05	Soil	05/01/24 10:15	05/01/24 16:05
2-03		4050124-06	Soil	05/01/24 09:30	05/01/24 16:05
2-04		4050124-07	Soil	05/01/24 10:45	05/01/24 16:05
2-05		4050124-08	Soil	05/01/24 11:00	05/01/24 16:05
2-06		4050124-09	Soil	05/01/24 13:30	05/01/24 16:05
2-07		4050124-10	Soil	05/01/24 11:45	05/01/24 16:05
2-09		4050124-11	Soil	05/01/24 14:30	05/01/24 16:05

Soil

4050124-12

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

2-10

05/01/24 16:05

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

OU-2A

4050124-01 (Soil) Sampled on: 05/01/24 15:00

		54	inpied on: 05/01					
Amalarta	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Duomomod	Amalyzad	A malaret
Analyte				. ,	Dilution	Prepared	Analyzed	Analyst
Semivolatile Organics by EPA 8								
Acenaphthene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Acenaphthylene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Anthracene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Benzo[a]anthracene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Benzo[b]fluoranthene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Benzo[k]fluoranthene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Benzo[a]pyrene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Chrysene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Fluoranthene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Fluorene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
2-Methylnaphthalene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Naphthalene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Phenanthrene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Pyrene	ND	ug/kg dry	90	90	1	05/03/24	05/06/24 14:42	EH
Surrogate: 2-Fluorophenol		23-121	91 %	05/03/24		05/06/24 14:42		
Surrogate: Phenol-d5		24-113	95 %	05/03/24		05/06/24 14:42		
Surrogate: Nitrobenzene-d5		23-120	92 %	05/03/24		05/06/24 14:42		
Surrogate: 2,4,6-Tribromophenol		19-122	89 %	05/03/24		05/06/24 14:42		
Surrogate: 2-Fluorobiphenyl		30-115	92 %	05/03/24		05/06/24 14:42		
Surrogate: Terphenyl-d14		18-137	95 %	05/03/24		05/06/24 14:42		
PERCENT SOLIDS BY ASTM	D2216-05 Pre	epared by Percent S	olids					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

05/01/24

05/02/24 08:31

Pakela Koms

Percent Solids

AB

Project Number: 47:18315-A

Analytical Results

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project Manager: Nick Stella

OU-2A

4050124-01 (Soil) Sampled on: 05/01/24 15:00

		Sa.	inpica on. 05/0	1/27 13:00				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
POLYCHLORINATED BIPHEN	YLS BY EPA 80	82A (GC/ECD) Prepa	red by 3540-GC	(Soxhlet) ClPestPC	СВ			
Aroclor-1016	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1221	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1232	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1242	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1248	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1254	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1260	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1262	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Aroclor-1268	ND	ug/kg dry	44.8	44.8	1	05/03/24	05/08/24 10:09	ARS
Surrogate: Tetrachloro-m-xylene		40-150	91 %	05/03/2	4	05/08/24 10:09		
Surrogate: Decachlorobiphenyl		40-150	88 %	05/03/2	4	05/08/24 10:09		
Total Metals Analysis by EPA 6	6020B Prepare	ed by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Arsenic	5.25	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Beryllium	0.357	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Cadmium	ND	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Chromium	20.8	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Copper	7.21	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Lead	5.18	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Mercury	0.0270	mg/kg dry	0.0140	0.0140	1	05/02/24	05/03/24 16:59	AWH
Nickel	4.38	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Selenium	1.10	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Silver	ND	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Thallium	ND	mg/kg dry	0.280	0.280	1	05/02/24	05/03/24 16:59	AWH
Zinc	15.1	mg/kg dry	1.40	1.40	1	05/02/24	05/03/24 16:59	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-2A

4050124-01 (Soil) Sampled on: 05/01/24 15:00

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-H	exavalent Cl	romium Digestic	n				
Chromium, Hexavalent	0.171	J	mg/kg dry	0.224	0.168	1	05/03/24	05/06/24 18:28	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kalacha Koms

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

OU-2B

4050124-02 (Soil) Sampled on: 05/01/24 15:05

		Sai	mpled on: 05/01	/24 15:05				
			Reporting	Detection	_			
Analyte	Result Note	es Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Semivolatile Organics by EPA 82'	70D (GC/MS) P1	epared by 3540)-GCMS(Soxhle	et)				
Acenaphthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Acenaphthylene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Anthracene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Benzo[a]anthracene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Benzo[b]fluoranthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Benzo[k]fluoranthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Benzo[a]pyrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Chrysene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Fluoranthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Fluorene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
2-Methylnaphthalene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Naphthalene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Phenanthrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Pyrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 15:03	EH
Surrogate: 2-Fluorophenol		23-121	92 %	05/03/24		05/06/24 15:03		
Surrogate: Phenol-d5		24-113	98 %	05/03/24		05/06/24 15:03		
Surrogate: Nitrobenzene-d5		23-120	95 %	05/03/24		05/06/24 15:03		
Surrogate: 2,4,6-Tribromophenol		19-122	96 %	05/03/24		05/06/24 15:03		
Surrogate: 2-Fluorobiphenyl		30-115	94 %	05/03/24		05/06/24 15:03		
Surrogate: Terphenyl-d14		18-137	96 %	05/03/24		05/06/24 15:03		
PERCENT SOLIDS BY ASTM D	2216-05 Prepare	ed by Percent S	olids					
Percent Solids	87	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Analytical Results

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project Manager: Nick Stella

OU-2B

4050124-02 (Soil) Sampled on: 05/01/24 15:05

-			inpica on octor					
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
POLYCHLORINATED BIPHEN	YLS BY EPA 80	82A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestPC	СВ			
Aroclor-1016	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1221	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1232	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1242	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1248	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1254	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1260	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1262	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Aroclor-1268	ND	ug/kg dry	45.8	45.8	1	05/03/24	05/08/24 10:25	ARS
Surrogate: Tetrachloro-m-xylene		40-150	78 %	05/03/2	14	05/08/24 10:25		
Surrogate: Decachlorobiphenyl		40-150	81 %	05/03/2	24	05/08/24 10:25		
Total Metals Analysis by EPA (6020B Prepare	d by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Arsenic	3.99	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Beryllium	0.430	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Cadmium	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Chromium	17.7	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Copper	8.32	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Lead	6.72	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Mercury	0.0344	mg/kg dry	0.0143	0.0143	1	05/02/24	05/03/24 17:16	AWH
Nickel	8.06	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Selenium	1.27	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Silver	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Thallium	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:16	AWH
Zinc	22.8	mg/kg dry	1.43	1.43	1	05/02/24	05/03/24 17:16	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Pakecka Kons

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-2B

4050124-02 (Soil) Sampled on: 05/01/24 15:05

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-He	xavalent Cl	romium Digestio	n				
Chromium, Hexavalent	0.263		mg/kg dry	0.229	0.172	1	05/03/24	05/06/24 18:46	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Pakecha Koms

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-2C

4050124-03 (Soil) Sampled on: 05/01/24 15:10

			inpied on. 03/01					
A	D 1	Notes Units	Reporting	Detection Limit (LOD)	Dilution	D 1	A1 4	A1
Analyte	Result		Limit (MRL)		Dilution	Prepared	Analyzed	Analys
Semivolatile Organics by EPA 8	,	•	•	•	1	05/02/24	05/03/24 15:44	EH
Acenaphthene	ND	ug/kg dry	92	92	1			
Acenaphthylene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Anthracene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Benzo[a]anthracene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Benzo[b]fluoranthene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Benzo[k]fluoranthene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Benzo[a]pyrene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Chrysene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Fluoranthene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Fluorene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
2-Methylnaphthalene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Naphthalene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Phenanthrene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Pyrene	ND	ug/kg dry	92	92	1	05/02/24	05/03/24 15:44	EH
Surrogate: 2-Fluorophenol		23-121	82 %	05/02/24		05/03/24 15:44		
Surrogate: Phenol-d5		24-113	83 %	05/02/24		05/03/24 15:44		
Surrogate: Nitrobenzene-d5		23-120	82 %	05/02/24		05/03/24 15:44		
Surrogate: 2,4,6-Tribromophenol		19-122	84 %	05/02/24		05/03/24 15:44		
Surrogate: 2-Fluorobiphenyl		30-115	84 %	05/02/24		05/03/24 15:44		
Surrogate: Terphenyl-d14		18-137	88 %	05/02/24		05/03/24 15:44		
PERCENT SOLIDS BY ASTM	D2216-05 Pro	epared by Percent S	olids					
Percent Solids	87	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-2C

4050124-03 (Soil) Sampled on: 05/01/24 15:10

		Sa	inpicu on. 05/01	1/27 13.10				
Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
POLYCHLORINATED BIPHENY	LS BY EPA 80	982A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestPC	СВ	-	-	
Aroclor-1016	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1221	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1232	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1242	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1248	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1254	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1260	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1262	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Aroclor-1268	ND	ug/kg dry	46.0	46.0	1	05/03/24	05/08/24 10:41	ARS
Surrogate: Tetrachloro-m-xylene		40-150	94 %	05/03/2	4	05/08/24 10:41		
Surrogate: Decachlorobiphenyl		40-150	89 %	05/03/2	4	05/08/24 10:41		
Total Metals Analysis by EPA 6	020B Prepare	ed by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Arsenic	3.61	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Beryllium	0.317	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Cadmium	ND	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Chromium	18.1	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Copper	7.79	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Lead	3.90	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Mercury	ND	mg/kg dry	0.0144	0.0144	1	05/02/24	05/03/24 17:19	AWH
Nickel	1.56	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Selenium	1.23	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Silver	ND	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Thallium	ND	mg/kg dry	0.288	0.288	1	05/02/24	05/03/24 17:19	AWH
Zinc	6.59	mg/kg dry	1.44	1.44	1	05/02/24	05/03/24 17:19	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-2C

4050124-03 (Soil) Sampled on: 05/01/24 15:10

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-He	xavalent Cl	nromium Digestio	n				
Chromium, Hexavalent	0.382		mg/kg dry	0.230	0.173	1	05/03/24	05/06/24 19:05	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kalacha Korns

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

> Reported: 05/08/24 13:37

OU-2D

4050124-04 (Soil) Sampled on: 05/01/24 15:15

			Reporting	Detection				
Analyte	Result Note	s Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Semivolatile Organics by EPA 8								
Acenaphthene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Acenaphthylene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Anthracene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Benzo[a]anthracene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Benzo[b]fluoranthene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Benzo[k]fluoranthene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Benzo[a]pyrene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Chrysene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Fluoranthene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Fluorene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
2-Methylnaphthalene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Naphthalene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Phenanthrene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Pyrene	ND	ug/kg dry	97	97	1	05/02/24	05/03/24 16:04	EH
Surrogate: 2-Fluorophenol		23-121	86 %	05/02/24		05/03/24 16:04		
Surrogate: Phenol-d5		24-113	90 %	05/02/24		05/03/24 16:04		
Surrogate: Nitrobenzene-d5		23-120	86 %	05/02/24		05/03/24 16:04		
Surrogate: 2,4,6-Tribromophenol		19-122	82 %	05/02/24		05/03/24 16:04		
Surrogate: 2-Fluorobiphenyl		30-115	81 %	05/02/24		05/03/24 16:04		
Surrogate: Terphenyl-d14		18-137	84 %	05/02/24		05/03/24 16:04		
PERCENT SOLIDS BY ASTM	D2216-05 Prepare	d by Percent S	olids					
Percent Solids	82	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-2D

4050124-04 (Soil) Sampled on: 05/01/24 15:15

		Sa.	inpica on. 05/01	1/27 13,13				
	D 1	NI.	Reporting	Detection	D''.	D 1	A 1 1	
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
POLYCHLORINATED BIPHEN	YLS BY EPA 80	82A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestPO	СВ			
Aroclor-1016	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1221	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1232	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1242	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1248	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1254	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1260	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1262	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Aroclor-1268	ND	ug/kg dry	48.6	48.6	1	05/03/24	05/08/24 10:57	ARS
Surrogate: Tetrachloro-m-xylene		40-150	82 %	05/03/2	14	05/08/24 10:57		
Surrogate: Decachlorobiphenyl		40-150	72 %	05/03/2	14	05/08/24 10:57		
Total Metals Analysis by EPA (6020B Prepare	d by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Arsenic	5.63	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Beryllium	ND	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Cadmium	ND	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Chromium	25.9	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Copper	12.2	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Lead	5.40	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Mercury	0.0307	mg/kg dry	0.0152	0.0152	1	05/02/24	05/03/24 17:26	AWH
Nickel	0.709	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Selenium	1.69	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Silver	ND	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Γhallium	ND	mg/kg dry	0.304	0.304	1	05/02/24	05/03/24 17:26	AWH
Zinc	8.51	mg/kg dry	1.52	1.52	1	05/02/24	05/03/24 17:26	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

e nelacie

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-2D

4050124-04 (Soil) Sampled on: 05/01/24 15:15

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-He	xavalent Cl	romium Digestio	n				
Chromium, Hexavalent	0.461		mg/kg dry	0.243	0.182	1	05/03/24	05/06/24 19:23	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kakecfa Koms

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-01 4050124-05 (Soil)

Sampled on: 05/01/24 10:15

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	CMS					
Acetone	ND	ug/kg dry	11.9	11.9	1	05/03/24	05/03/24 16:11	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	59.7	59.7	1	05/03/24	05/03/24 16:11	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Benzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Bromobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Bromochloromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Bromodichloromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Bromoform	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Bromomethane	ND	ug/kg dry	6.0	6.0	1	05/03/24	05/03/24 16:11	LL
tert-Butanol (TBA)	ND	ug/kg dry	59.7	59.7	1	05/03/24	05/03/24 16:11	LL
2-Butanone (MEK)	ND	ug/kg dry	11.9	11.9	1	05/03/24	05/03/24 16:11	LL
n-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
sec-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
tert-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Carbon disulfide	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Carbon tetrachloride	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Chlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Chloroethane	ND	ug/kg dry	6.0	6.0	1	05/03/24	05/03/24 16:11	LL
Chloroform	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Chloromethane	ND	ug/kg dry	6.0	6.0	1	05/03/24	05/03/24 16:11	LL
2-Chlorotoluene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
4-Chlorotoluene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Dibromochloromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Dibromomethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,3-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,4-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Dichlorodifluoromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1-Dichloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2-Dichloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL

Pakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-01 4050124-05 (Soil)

Sampled on: 05/01/24 10:15

trans-1,2-Dichloroethene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Dichlorofhoromethane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,2-Dichloropropane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LE 1 trans-1,3-Dichloropropene ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LL 1,1,2-Trehalhoroethane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LL 1,1,2-Trehalhoroethane ND ugkg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1 LL 1,1,2-Trehalhoroeth					Reporting	Detection				
cis-1,2-Dichlorosthene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 (6:11) LL trans-1,2-Dichlorosthene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 (6:11) LL Dichloroptopene ND ug/kg dry 6.0 2.4 1 05/03/24 (05/03/24 16:11) LL 1,3-Dichloroptopane ND ug/kg dry 6.0 2.4 1 05/03/24 (05/03/24 16:11) LL 2,2-Dichloroptopane ND ug/kg dry 6.0 2.4 1 05/03/24 (05/03/24 16:11) LL 1,1-Dichloroptopane ND ug/kg dry 6.0 2.4 1 05/03/24 (05/03/24 16:11) LL cis-1,3-Dichloroptopane ND ug/kg dry 6.0 2.4 1 05/03/24 (05/03/24 16:11) LL trans-1,3-Dichloroptopane ND ug/kg dry 6.0 2.4 1 05/03/24 (05/03/24 16:11) LL trans-1,3-Dichloroptopane ND ug/kg dry 6.0 2.4 1 05/03/24	Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
trans-1,2-Dichloroethene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Dichlorofluoromethane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,2-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,2-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL	Volatile Organics by EPA 8260B (GC/MS) Pr	epared b	y 5030-GC	MS (continued)					
Dichloroffuoromethane	cis-1,2-Dichloroethene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 1,3-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 2,2-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL 2,2-Dichloropropane ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL cis-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL cis-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Cis-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Diisopropyl ether (DIPE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Ethyl terr-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 0503/24 0503/24 16:11 LL Naphthalene ND ug/kg dry 6.	trans-1,2-Dichloroethene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,3-Dichloropropane ND	Dichlorofluoromethane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
2,2.Dichloropropane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Dick trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Dick trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Dick trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Dick trans-1,3-Dick trans-	1,2-Dichloropropane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1-Dichloropropene	1,3-Dichloropropane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
cis-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Diisopropyl ether (DIPE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Hexachlorobutadiene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 2-Hexanone ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 2-Hexanone ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 2-Hexanone ND ug/kg dry	2,2-Dichloropropane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
trans-1,3-Dichloropropene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Diisopropyl ether (DIPE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl benzene ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene (ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US Isopropyl benzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL US ISOpropyl benzene ND ug/	1,1-Dichloropropene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Diisopropyl ether (DIPE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL IL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL IL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL IL IL ISOpropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL IL	cis-1,3-Dichloropropene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Ethylbenzene ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Hasopropylbenzene (MTBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Isopropylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Methyle-2-pentanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Methylene chloride ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug	trans-1,3-Dichloropropene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Hexachlorobutadiene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Sopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Sopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Sopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Sopropylbenzene (ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Sopropylbenzene (ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL SOPROPYLO (ND Ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL SOPROPYLO (ND Ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL SOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/24 16:11 LL NOPROPYLO (ND Ug/kg dry 24.0 24 1 05/03/24 05/03/2	Diisopropyl ether (DIPE)	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Hexachlorobutadiene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 2-Hexanone ND ug/kg dry 11.9 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Methyl-z-pentanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Methylene chloride 27.4 L ug/kg dry 23.9 23.9 23.9 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL Tit,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL LL LL LL LL LL LL LL LL LL LL	Ethyl tert-butyl ether (ETBE)	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
2-Hexanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Methyl tert-butyl ether (MTBE) ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL 4-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Methylene chloride 27.4 L ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL TL Trichloroethane ND ug/kg dry 6.0 2.4	Ethylbenzene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Suppropylbenzene (Cumene) ND	Hexachlorobutadiene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
4-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Methyl etrt-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL 4-Methyl-2-pentanone ND ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND u	2-Hexanone	ND		ug/kg dry	11.9	11.9	1	05/03/24	05/03/24 16:11	LL
Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 4-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 05/03/24 16:11 LL Methylene chloride 27.4 L ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 05/03/24 16:11 LL ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Totluene ND ug/kg dry 6.0 <	Isopropylbenzene (Cumene)	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
4-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/03/24 05/03/24 16:11 LL Methylene chloride 27.4 L ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	4-Isopropyltoluene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Methylene chloride 27.4 L ug/kg dry 23.9 23.9 1 05/03/24 05/03/24 16:11 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0<	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Naphthalene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	4-Methyl-2-pentanone	ND		ug/kg dry	11.9	11.9	1	05/03/24	05/03/24 16:11	LL
n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	Methylene chloride	27.4	L	ug/kg dry	23.9	23.9	1	05/03/24	05/03/24 16:11	LL
Styrene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	Naphthalene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	n-Propylbenzene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	Styrene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Toluene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	Tetrachloroethene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	Toluene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	1,2,3-Trichlorobenzene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	1,2,4-Trichlorobenzene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Trichloroethene ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	1,1,1-Trichloroethane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	1,1,2-Trichloroethane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
	Trichloroethene	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,2,3-Trichloropropane ND ug/kg dry 6.0 2.4 1 05/03/24 05/03/24 16:11 LL	Trichlorofluoromethane (Freon 11)	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
	1,2,3-Trichloropropane	ND		ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL

Pakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A

Project Manager: Nick Stella

2-01

4050124-05 (Soil) Sampled on: 05/01/24 10:15

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pr	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Vinyl chloride	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
o-Xylene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
m- & p-Xylenes	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 16:11	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	95 %	05/03/24		05/03/24 16:11		
Surrogate: Toluene-d8		75-120	98 %	05/03/24		05/03/24 16:11		
Surrogate: 4-Bromofluorobenzene		65-120	101 %	05/03/24		05/03/24 16:11		
GASOLINE RANGE ORGANICS	S BY EPA 5	030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/07/24	05/07/24 12:44	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	103 %	05/07/24		05/07/24 12:44		
DIESEL RANGE ORGANICS BY	EPA 3540/	/8015C Prepared by	y 3540-GC(Soxl	ılet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.5	9.5	1	05/02/24	05/03/24 18:42	EH
Surrogate: o-Terphenyl		70-130	103 %	05/02/24		05/03/24 18:42		
PERCENT SOLIDS BY ASTM D	2216-05 Pre	epared by Percent S	Solids					
Percent Solids	84	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-03

4050124-06 (Soil) Sampled on: 05/01/24 09:30

						Sampled on: 03/01/24 07:50										
	n 1		Reporting	Detection	5 11											
Analyte		Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst								
Volatile Organics by EPA 8260B																
Acetone	ND	ug/kg dry	12.4	12.4	1	05/03/24	05/03/24 16:38	LL								
tert-Amyl alcohol (TAA)	ND	ug/kg dry	62.2	62.2	1	05/03/24	05/03/24 16:38	LL								
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Benzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Bromobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Bromochloromethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Bromodichloromethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Bromoform	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Bromomethane	ND	ug/kg dry	6.2	6.2	1	05/03/24	05/03/24 16:38	LL								
tert-Butanol (TBA)	ND	ug/kg dry	62.2	62.2	1	05/03/24	05/03/24 16:38	LL								
2-Butanone (MEK)	ND	ug/kg dry	12.4	12.4	1	05/03/24	05/03/24 16:38	LL								
n-Butylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
sec-Butylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
tert-Butylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Carbon disulfide	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Carbon tetrachloride	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Chlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Chloroethane	ND	ug/kg dry	6.2	6.2	1	05/03/24	05/03/24 16:38	LL								
Chloroform	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Chloromethane	ND	ug/kg dry	6.2	6.2	1	05/03/24	05/03/24 16:38	LL								
2-Chlorotoluene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
4-Chlorotoluene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Dibromochloromethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Dibromomethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,2-Dichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,3-Dichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,4-Dichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
Dichlorodifluoromethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,1-Dichloroethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,2-Dichloroethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								
1,1-Dichloroethene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL								

lakecka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-03 4050124-06 (Soil)

Sampled on: 05/01/24 09:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pre	pared by 5030-G	CMS (continued)					
cis-1,2-Dichloroethene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
trans-1,2-Dichloroethene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Dichlorofluoromethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,2-Dichloropropane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,3-Dichloropropane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
2,2-Dichloropropane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,1-Dichloropropene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
cis-1,3-Dichloropropene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
trans-1,3-Dichloropropene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Diisopropyl ether (DIPE)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Ethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Hexachlorobutadiene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
2-Hexanone	ND	ug/kg dry	12.4	12.4	1	05/03/24	05/03/24 16:38	LL
Isopropylbenzene (Cumene)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
4-Isopropyltoluene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
4-Methyl-2-pentanone	ND	ug/kg dry	12.4	12.4	1	05/03/24	05/03/24 16:38	LL
Methylene chloride	34.7	L ug/kg dry	24.9	24.9	1	05/03/24	05/03/24 16:38	LL
Naphthalene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
n-Propylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Styrene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Tetrachloroethene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Toluene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,2,3-Trichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,2,4-Trichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,1,1-Trichloroethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,1,2-Trichloroethane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Trichloroethene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,2,3-Trichloropropane	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-03

4050124-06 (Soil) Sampled on: 05/01/24 09:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	CMS (continued	l)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Vinyl chloride	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
o-Xylene	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
m- & p-Xylenes	ND	ug/kg dry	6.2	2.5	1	05/03/24	05/03/24 16:38	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	95 %	05/03/24		05/03/24 16:38		
Surrogate: Toluene-d8		75-120	99 %	05/03/24		05/03/24 16:38		
Surrogate: 4-Bromofluorobenzene		65-120	101 %	05/03/24		05/03/24 16:38		
GASOLINE RANGE ORGANICS	S BY EPA 5	5030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/07/24	05/07/24 13:12	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	104 %	05/07/24		05/07/24 13:12		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Sox	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	10.0	10.0	1	05/02/24	05/03/24 19:10	EH
Surrogate: o-Terphenyl		70-130	99 %	05/02/24		05/03/24 19:10		
PERCENT SOLIDS BY ASTM D2	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	80	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-04

4050124-07 (Soil) Sampled on: 05/01/24 10:45

			Reporting	Detection				
Analyte	Result 1	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prep	pared by 5030-GC	CMS					
Acetone	ND	ug/kg dry	10.8	10.8	1	05/03/24	05/03/24 17:06	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	53.8	53.8	1	05/03/24	05/03/24 17:06	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Benzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Bromobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Bromochloromethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Bromodichloromethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Bromoform	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Bromomethane	ND	ug/kg dry	5.4	5.4	1	05/03/24	05/03/24 17:06	LL
tert-Butanol (TBA)	ND	ug/kg dry	53.8	53.8	1	05/03/24	05/03/24 17:06	LL
2-Butanone (MEK)	ND	ug/kg dry	10.8	10.8	1	05/03/24	05/03/24 17:06	LL
n-Butylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
sec-Butylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
tert-Butylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Carbon disulfide	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Carbon tetrachloride	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Chlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Chloroethane	ND	ug/kg dry	5.4	5.4	1	05/03/24	05/03/24 17:06	LL
Chloroform	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Chloromethane	ND	ug/kg dry	5.4	5.4	1	05/03/24	05/03/24 17:06	LL
2-Chlorotoluene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
4-Chlorotoluene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Dibromochloromethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Dibromomethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2-Dichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,3-Dichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,4-Dichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Dichlorodifluoromethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1-Dichloroethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2-Dichloroethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1-Dichloroethene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-04

4050124-07 (Soil) Sampled on: 05/01/24 10:45

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	CMS (continued)				-
cis-1,2-Dichloroethene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
trans-1,2-Dichloroethene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Dichlorofluoromethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2-Dichloropropane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,3-Dichloropropane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
2,2-Dichloropropane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1-Dichloropropene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
cis-1,3-Dichloropropene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
trans-1,3-Dichloropropene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Diisopropyl ether (DIPE)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Ethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Hexachlorobutadiene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
2-Hexanone	ND	ug/kg dry	10.8	10.8	1	05/03/24	05/03/24 17:06	LL
Isopropylbenzene (Cumene)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
4-Isopropyltoluene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
4-Methyl-2-pentanone	ND	ug/kg dry	10.8	10.8	1	05/03/24	05/03/24 17:06	LL
Methylene chloride	28.8	L ug/kg dry	21.5	21.5	1	05/03/24	05/03/24 17:06	LL
Naphthalene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
n-Propylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Styrene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Tetrachloroethene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Toluene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2,3-Trichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2,4-Trichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1,1-Trichloroethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,1,2-Trichloroethane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Trichloroethene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,2,3-Trichloropropane	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL

sons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

2-04

4050124-07 (Soil) Sampled on: 05/01/24 10:45

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pro	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Vinyl chloride	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
o-Xylene	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
m- & p-Xylenes	ND	ug/kg dry	5.4	2.2	1	05/03/24	05/03/24 17:06	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	97 %	05/03/24		05/03/24 17:06		
Surrogate: Toluene-d8		75-120	99 %	05/03/24		05/03/24 17:06		
Surrogate: 4-Bromofluorobenzene		65-120	101 %	05/03/24		05/03/24 17:06		
GASOLINE RANGE ORGANICS	S BY EPA 5	030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.11	0.11	1	05/07/24	05/07/24 13:39	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	104 %	05/07/24		05/07/24 13:39		
DIESEL RANGE ORGANICS BY	EPA 3540/	8015C Prepared by	y 3540-GC(Soxl	nlet)				
Diesel-Range Organics (C10-C28)	11.1	mg/kg dry	8.6	8.6	1	05/02/24	05/03/24 19:40	EH
Surrogate: o-Terphenyl		70-130	101 %	05/02/24		05/03/24 19:40		
PERCENT SOLIDS BY ASTM D2	2216-05 Pre	pared by Percent S	Solids					
Percent Solids	93	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

inela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-05 4050124-08 (Soil)

Sampled on: 05/01/24 11:00

Reporting Detection Analyte Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed Analyst Volatile Organics by EPA 8260B (GC/MS) Prepared by 5030-GCMS ND 10.6 10.6 1 05/03/24 05/03/24 17:33 LL Acetone ug/kg dry tert-Amyl alcohol (TAA) ND ug/kg dry 53.1 53.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 LL tert-Amyl methyl ether (TAME) ND ug/kg dry 5.3 2.1 ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL Benzene Bromobenzene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL Bromochloromethane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 1 05/03/24 05/03/24 17:33 LL Bromodichloromethane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 Bromoform ND ug/kg dry 5.3 2.1 LL 05/03/24 05/03/24 17:33 LLND 5.3 5.3 Bromomethane ug/kg dry 53.1 05/03/24 05/03/24 17:33 1 LL tert-Butanol (TBA) ND ug/kg dry 53.1 ND ug/kg dry 10.6 10.6 05/03/24 05/03/24 17:33 LL 2-Butanone (MEK) ND 05/03/24 05/03/24 17:33 LL n-Butylbenzene ug/kg dry 5.3 2.1 sec-Butylbenzene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 LL tert-Butylbenzene ND ug/kg dry 5.3 Carbon disulfide ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL Carbon tetrachloride ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 Chlorobenzene ND ug/kg dry 5.3 2.1 LL 05/03/24 05/03/24 17:33 LL Chloroethane ND ug/kg dry 5.3 5.3 ug/kg dry 1 05/03/24 05/03/24 17:33 LL Chloroform ND 5.3 2.1 ND 5.3 5.3 05/03/24 05/03/24 17:33 LLChloromethane ug/kg dry 05/03/24 05/03/24 17:33 LL ND 5.3 2.1 2-Chlorotoluene ug/kg dry ND 5.3 2.1 05/03/24 05/03/24 17:33 LL 4-Chlorotoluene ug/kg dry ND 5.3 2.1 05/03/24 05/03/24 17:33 LL 1,2-Dibromo-3-chloropropane ug/kg dry Dibromochloromethane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 LL 1,2-Dibromoethane (EDB) ND ug/kg dry 5.3 2.1 Dibromomethane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 1,2-Dichlorobenzene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 1,3-Dichlorobenzene ND ug/kg dry 5.3 2.1 LL ND 2.1 1 05/03/24 05/03/24 17:33 LL 1,4-Dichlorobenzene ug/kg dry 5.3 05/03/24 05/03/24 17:33 LL Dichlorodifluoromethane ND ug/kg dry 5.3 2.1 1 ND 5.3 2.1 05/03/24 05/03/24 17:33 LL1,1-Dichloroethane ug/kg dry

5.3

5.3

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2.1

2.1

05/03/24

05/03/24

05/03/24 17:33

05/03/24 17:33

Rakecka Kons

1,2-Dichloroethane

1.1-Dichloroethene

Rabecka Koons, Quality Assurance Officer

ug/kg dry

ug/kg dry

ND

ND

LL

LL

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-05 4050124-08 (Soil)

Sampled on: 05/01/24 11:00

Reporting Detection Analyte Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed Analyst Volatile Organics by EPA 8260B (GC/MS) Prepared by 5030-GCMS (continued) cis-1,2-Dichloroethene ND 2.1 1 05/03/24 05/03/24 17:33 LL ug/kg dry 5.3 05/03/24 17:33 trans-1.2-Dichloroethene ND ug/kg dry 5.3 2.1 05/03/24 LL 05/03/24 05/03/24 17:33 LL Dichlorofluoromethane ND ug/kg dry 5.3 2.1 1,2-Dichloropropane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 1,3-Dichloropropane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 2,2-Dichloropropane ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 1 05/03/24 05/03/24 17:33 LL 1,1-Dichloropropene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL. cis-1,3-Dichloropropene ND ug/kg dry 5.3 2.1 ND 5.3 2.1 05/03/24 05/03/24 17:33 LL trans-1,3-Dichloropropene ug/kg dry 05/03/24 05/03/24 17:33 2.1 LL Diisopropyl ether (DIPE) ND ug/kg dry 5.3 Ethyl tert-butyl ether (ETBE) ND 5.3 2.1 05/03/24 05/03/24 17:33 LL ug/kg dry ND 5.3 2.1 05/03/24 05/03/24 17:33 LL Ethylbenzene ug/kg dry Hexachlorobutadiene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 LL 2-Hexanone ND ug/kg dry 10.6 10.6 Isopropylbenzene (Cumene) ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 4-Isopropyltoluene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.3 2.1 LL 10.6 05/03/24 05/03/24 17:33 LL 4-Methyl-2-pentanone ND ug/kg dry 10.6 05/03/24 ug/kg dry 1 05/03/24 17:33 LL Methylene chloride 22.7 21.2 21.2 05/03/24 05/03/24 17:33 LL Naphthalene ND ug/kg dry 5.3 2.1 n-Propylbenzene ND ug/kg dry 5.3 2.1 1 05/03/24 05/03/24 17:33 LL 05/03/24 05/03/24 17:33 LL ND ug/kg dry 5.3 2.1 2.1 05/03/24 17:33 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.3 05/03/24 1 05/03/24 05/03/24 17:33 1,1,2,2-Tetrachloroethane LL ND ug/kg dry 5.3 2.1 Tetrachloroethene ND ug/kg dry 2.1 1 05/03/24 05/03/24 17:33 LL 5.3 05/03/24 05/03/24 17:33 LL ND ug/kg dry 5.3 Toluene 2.1 1,2,3-Trichlorobenzene ND 5.3 2.1 05/03/24 05/03/24 17:33 LL ug/kg dry 05/03/24 05/03/24 17:33 1.2.4-Trichlorobenzene ND ug/kg dry 5.3 2.1 LL 05/03/24 05/03/24 17:33 LL 1,1,1-Trichloroethane ND ug/kg dry 5.3 2.1 ug/kg dry 1 05/03/24 05/03/24 17:33 LL 1,1,2-Trichloroethane ND 5.3 2.1 Trichloroethene ND ug/kg dry 5.3 2.1 05/03/24 05/03/24 17:33 LL 05/03/24 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.3 2.1 05/03/24 17:33

5.3

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

2.1

05/03/24

05/03/24 17:33

Rakela Kons

1,2,3-Trichloropropane

Rabecka Koons, Quality Assurance Officer

ug/kg dry

ND

LL

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project Number: 47:18315-A Project Manager: Nick Stella

2-05

4050124-08 (Soil) Sampled on: 05/01/24 11:00

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pro	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.3	2.1	1	05/03/24	05/03/24 17:33	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.3	2.1	1	05/03/24	05/03/24 17:33	LL
Vinyl chloride	ND	ug/kg dry	5.3	2.1	1	05/03/24	05/03/24 17:33	LL
o-Xylene	ND	ug/kg dry	5.3	2.1	1	05/03/24	05/03/24 17:33	LL
m- & p-Xylenes	ND	ug/kg dry	5.3	2.1	1	05/03/24	05/03/24 17:33	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	96 %	05/03/24		05/03/24 17:33		
Surrogate: Toluene-d8		75-120	99 %	05/03/24		05/03/24 17:33		
Surrogate: 4-Bromofluorobenzene		65-120	102 %	05/03/24		05/03/24 17:33		
GASOLINE RANGE ORGANICS	S BY EPA 50	030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.11	0.11	1	05/07/24	05/07/24 14:07	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	104 %	05/07/24		05/07/24 14:07		
DIESEL RANGE ORGANICS BY	EPA 3540/	8015C Prepared by	3540-GC(Soxl	ılet)				
Diesel-Range Organics (C10-C28)	11.0	mg/kg dry	8.5	8.5	1	05/02/24	05/03/24 20:09	EH
Surrogate: o-Terphenyl		70-130	103 %	05/02/24		05/03/24 20:09		
PERCENT SOLIDS BY ASTM D2	2216-05 Pre	pared by Percent S	olids					
Percent Solids	94	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-06

4050124-09 (Soil) Sampled on: 05/01/24 13:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GO	C/MS) Pr	epared by 5030-Ge	CMS					
Acetone	ND	ug/kg dry	11.7	11.7	1	05/03/24	05/03/24 18:01	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	58.6	58.6	1	05/03/24	05/03/24 18:01	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Benzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Bromobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Bromochloromethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Bromodichloromethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Bromoform	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Bromomethane	ND	ug/kg dry	5.9	5.9	1	05/03/24	05/03/24 18:01	LL
tert-Butanol (TBA)	ND	ug/kg dry	58.6	58.6	1	05/03/24	05/03/24 18:01	LL
2-Butanone (MEK)	ND	ug/kg dry	11.7	11.7	1	05/03/24	05/03/24 18:01	LL
n-Butylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
sec-Butylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
tert-Butylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Carbon disulfide	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Carbon tetrachloride	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Chlorobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Chloroethane	ND	ug/kg dry	5.9	5.9	1	05/03/24	05/03/24 18:01	LL
Chloroform	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Chloromethane	ND	ug/kg dry	5.9	5.9	1	05/03/24	05/03/24 18:01	LL
2-Chlorotoluene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
4-Chlorotoluene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Dibromochloromethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Dibromomethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,2-Dichlorobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,3-Dichlorobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,4-Dichlorobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Dichlorodifluoromethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,1-Dichloroethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,2-Dichloroethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,1-Dichloroethene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL

Pakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-06

4050124-09 (Soil) Sampled on: 05/01/24 13:30

			inpieu on. 05/01							
	D to	NI.	Reporting	Detection	D.1 .:	D 1		A 1 /		
Analyte		Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst		
Volatile Organics by EPA 8260B (GC/MS) Prepared by 5030-GCMS (continued)										
cis-1,2-Dichloroethene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
trans-1,2-Dichloroethene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Dichlorofluoromethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,2-Dichloropropane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,3-Dichloropropane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
2,2-Dichloropropane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,1-Dichloropropene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
cis-1,3-Dichloropropene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
trans-1,3-Dichloropropene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Diisopropyl ether (DIPE)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Ethylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Hexachlorobutadiene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
2-Hexanone	ND	ug/kg dry	11.7	11.7	1	05/03/24	05/03/24 18:01	LL		
Isopropylbenzene (Cumene)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
4-Isopropyltoluene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
4-Methyl-2-pentanone	ND	ug/kg dry	11.7	11.7	1	05/03/24	05/03/24 18:01	LL		
Methylene chloride	30.0	L ug/kg dry	23.4	23.4	1	05/03/24	05/03/24 18:01	LL		
Naphthalene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
n-Propylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Styrene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Tetrachloroethene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Toluene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,2,3-Trichlorobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,2,4-Trichlorobenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,1,1-Trichloroethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,1,2-Trichloroethane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Trichloroethene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1,2,3-Trichloropropane	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL		
1 1		· · · ·								

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nela de la proposición dela proposición de la proposición dela proposición de la proposición de la proposición de la pro

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

2-06

4050124-09 (Soil) Sampled on: 05/01/24 13:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	MS (continued	l)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Vinyl chloride	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
o-Xylene	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
m- & p-Xylenes	ND	ug/kg dry	5.9	2.3	1	05/03/24	05/03/24 18:01	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	96 %	05/03/24		05/03/24 18:01		
Surrogate: Toluene-d8		75-120	98 %	05/03/24		05/03/24 18:01		
Surrogate: 4-Bromofluorobenzene		65-120	101 %	05/03/24		05/03/24 18:01		
GASOLINE RANGE ORGANICS	BY EPA 5	5030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/07/24	05/07/24 14:35	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	104 %	05/07/24		05/07/24 14:35		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Sox	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.4	9.4	1	05/02/24	05/03/24 20:38	EH
Surrogate: o-Terphenyl		70-130	96 %	05/02/24		05/03/24 20:38		
PERCENT SOLIDS BY ASTM D2	216-05 Pr	epared by Percent S	Solids					
Percent Solids	85	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-07

4050124-10 (Soil) Sampled on: 05/01/24 11:45

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-G	CMS					
Acetone	ND	ug/kg dry	12.0	12.0	1	05/03/24	05/03/24 18:28	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	59.8	59.8	1	05/03/24	05/03/24 18:28	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Benzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Bromobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Bromochloromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Bromodichloromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Bromoform	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Bromomethane	ND	ug/kg dry	6.0	6.0	1	05/03/24	05/03/24 18:28	LL
tert-Butanol (TBA)	ND	ug/kg dry	59.8	59.8	1	05/03/24	05/03/24 18:28	LL
2-Butanone (MEK)	ND	ug/kg dry	12.0	12.0	1	05/03/24	05/03/24 18:28	LL
n-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
sec-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
tert-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Carbon disulfide	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Carbon tetrachloride	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Chlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Chloroethane	ND	ug/kg dry	6.0	6.0	1	05/03/24	05/03/24 18:28	LL
Chloroform	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Chloromethane	ND	ug/kg dry	6.0	6.0	1	05/03/24	05/03/24 18:28	LL
2-Chlorotoluene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
4-Chlorotoluene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Dibromochloromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Dibromomethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,3-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,4-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Dichlorodifluoromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1-Dichloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2-Dichloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-07

4050124-10 (Soil) Sampled on: 05/01/24 11:45

		541	Papartina					
Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (. ,	Dilution	Trepared	1 mary 200	2 mary st
cis-1.2-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
trans-1,2-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Dichlorofluoromethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2-Dichloropropane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,3-Dichloropropane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
2,2-Dichloropropane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1-Dichloropropene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
cis-1,3-Dichloropropene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
trans-1,3-Dichloropropene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Diisopropyl ether (DIPE)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Ethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Hexachlorobutadiene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
2-Hexanone	ND	ug/kg dry	12.0	12.0	1	05/03/24	05/03/24 18:28	LL
Isopropylbenzene (Cumene)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
4-Isopropyltoluene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
4-Methyl-2-pentanone	ND	ug/kg dry	12.0	12.0	1	05/03/24	05/03/24 18:28	LL
Methylene chloride	29.0	L ug/kg dry	23.9	23.9	1	05/03/24	05/03/24 18:28	LL
Naphthalene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
n-Propylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Styrene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Tetrachloroethene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Toluene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2,3-Trichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2,4-Trichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1,1-Trichloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,1,2-Trichloroethane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Trichloroethene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,2,3-Trichloropropane	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL

ons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

enela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project Number: 47:18315-A Project Manager: Nick Stella

2-07

4050124-10 (Soil) Sampled on: 05/01/24 11:45

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pr	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Vinyl chloride	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
o-Xylene	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
m- & p-Xylenes	ND	ug/kg dry	6.0	2.4	1	05/03/24	05/03/24 18:28	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	94 %	05/03/24		05/03/24 18:28		
Surrogate: Toluene-d8		75-120	100 %	05/03/24		05/03/24 18:28		
Surrogate: 4-Bromofluorobenzene		65-120	102 %	05/03/24		05/03/24 18:28		
GASOLINE RANGE ORGANICS	S BY EPA 5	030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/07/24	05/07/24 15:03	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	104 %	05/07/24		05/07/24 15:03		
DIESEL RANGE ORGANICS BY	EPA 3540/	/8015C Prepared by	y 3540-GC(Soxl	nlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.6	9.6	1	05/02/24	05/03/24 21:07	EH
Surrogate: o-Terphenyl		70-130	96 %	05/02/24		05/03/24 21:07		
PERCENT SOLIDS BY ASTM D	2216-05 Pre	epared by Percent S	olids					
Percent Solids	84	%			1	05/01/24	05/02/24 08:31	AB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-09

4050124-11 (Soil) Sampled on: 05/01/24 14:30

Sampled on: 05/01/24 14:30										
			Reporting	Detection						
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst		
Volatile Organics by EPA 8260B (GC/MS) Pre	pared by 5030-GC	CMS							
Acetone	ND	ug/kg dry	12.2	12.2	1	05/03/24	05/03/24 18:56	LL		
tert-Amyl alcohol (TAA)	ND	ug/kg dry	60.8	60.8	1	05/03/24	05/03/24 18:56	LL		
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Benzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Bromobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Bromochloromethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Bromodichloromethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Bromoform	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Bromomethane	ND	ug/kg dry	6.1	6.1	1	05/03/24	05/03/24 18:56	LL		
tert-Butanol (TBA)	ND	ug/kg dry	60.8	60.8	1	05/03/24	05/03/24 18:56	LL		
2-Butanone (MEK)	ND	ug/kg dry	12.2	12.2	1	05/03/24	05/03/24 18:56	LL		
n-Butylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
sec-Butylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
tert-Butylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Carbon disulfide	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Carbon tetrachloride	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Chlorobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Chloroethane	ND	ug/kg dry	6.1	6.1	1	05/03/24	05/03/24 18:56	LL		
Chloroform	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Chloromethane	ND	ug/kg dry	6.1	6.1	1	05/03/24	05/03/24 18:56	LL		
2-Chlorotoluene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
4-Chlorotoluene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Dibromochloromethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Dibromomethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,2-Dichlorobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,3-Dichlorobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,4-Dichlorobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
Dichlorodifluoromethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,1-Dichloroethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,2-Dichloroethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		
1,1-Dichloroethene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL		

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-09

4050124-11 (Soil) Sampled on: 05/01/24 14:30

			nipicu on. 05/01					
Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Dronomod	Analyzed	Amalanat
				. ,	Dilution	Prepared	Anaryzed	Analyst
Volatile Organics by EPA 8260B (C						05/02/24	05/02/24 10 56	
cis-1,2-Dichloroethene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
trans-1,2-Dichloroethene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Dichlorofluoromethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,2-Dichloropropane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,3-Dichloropropane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
2,2-Dichloropropane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,1-Dichloropropene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
cis-1,3-Dichloropropene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
trans-1,3-Dichloropropene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Diisopropyl ether (DIPE)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Ethylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Hexachlorobutadiene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
2-Hexanone	ND	ug/kg dry	12.2	12.2	1	05/03/24	05/03/24 18:56	LL
Isopropylbenzene (Cumene)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
4-Isopropyltoluene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
4-Methyl-2-pentanone	ND	ug/kg dry	12.2	12.2	1	05/03/24	05/03/24 18:56	LL
Methylene chloride	31.2	L ug/kg dry	24.3	24.3	1	05/03/24	05/03/24 18:56	LL
Naphthalene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
n-Propylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Styrene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Tetrachloroethene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Toluene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,2,3-Trichlorobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,2,4-Trichlorobenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,1,1-Trichloroethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,1,2-Trichloroethane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Trichloroethene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,2,3-Trichloropropane	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,2,5 Triemoropropune	.112	J	0.1	۷.٦	-			

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

2-09

4050124-11 (Soil) Sampled on: 05/01/24 14:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Vinyl chloride	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
o-Xylene	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
m- & p-Xylenes	ND	ug/kg dry	6.1	2.4	1	05/03/24	05/03/24 18:56	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	97 %	05/03/24		05/03/24 18:56		
Surrogate: Toluene-d8		75-120	98 %	05/03/24		05/03/24 18:56		
Surrogate: 4-Bromofluorobenzene		65-120	100 %	05/03/24		05/03/24 18:56		
GASOLINE RANGE ORGANICS	S BY EPA 5	5030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/07/24	05/07/24 15:30	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	105 %	05/07/24		05/07/24 15:30		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Sox	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.7	9.7	1	05/02/24	05/03/24 21:36	EH
Surrogate: o-Terphenyl		70-130	96 %	05/02/24		05/03/24 21:36		
PERCENT SOLIDS BY ASTM D2	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	82	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-10 4050124-12 (Soil)

Sampled on: 05/01/24 14:15

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pı	repared by 5030-GC	EMS					
Acetone	ND	ug/kg dry	11.0	11.0	1	05/03/24	05/03/24 19:23	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	55.2	55.2	1	05/03/24	05/03/24 19:23	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Benzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Bromobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Bromochloromethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Bromodichloromethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Bromoform	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Bromomethane	ND	ug/kg dry	5.5	5.5	1	05/03/24	05/03/24 19:23	LL
tert-Butanol (TBA)	ND	ug/kg dry	55.2	55.2	1	05/03/24	05/03/24 19:23	LL
2-Butanone (MEK)	ND	ug/kg dry	11.0	11.0	1	05/03/24	05/03/24 19:23	LL
n-Butylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
sec-Butylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
tert-Butylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Carbon disulfide	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Carbon tetrachloride	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Chlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Chloroethane	ND	ug/kg dry	5.5	5.5	1	05/03/24	05/03/24 19:23	LL
Chloroform	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Chloromethane	ND	ug/kg dry	5.5	5.5	1	05/03/24	05/03/24 19:23	LL
2-Chlorotoluene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
4-Chlorotoluene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Dibromochloromethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Dibromomethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2-Dichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,3-Dichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,4-Dichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Dichlorodifluoromethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1-Dichloroethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2-Dichloroethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1-Dichloroethene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL

custody do

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-10 4050124-12 (Soil)

Sampled on: 05/01/24 14:15

		54.	nipicu on. 05/01					
Analysis	D1	Ni-4 II-i	Reporting	Detection	D:1	D 1	A1 J	A 1 (
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (Control of Section 2)								
cis-1,2-Dichloroethene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
trans-1,2-Dichloroethene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Dichlorofluoromethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2-Dichloropropane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,3-Dichloropropane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
2,2-Dichloropropane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1-Dichloropropene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
cis-1,3-Dichloropropene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
trans-1,3-Dichloropropene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Diisopropyl ether (DIPE)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Ethylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Hexachlorobutadiene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
2-Hexanone	ND	ug/kg dry	11.0	11.0	1	05/03/24	05/03/24 19:23	LL
Isopropylbenzene (Cumene)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
4-Isopropyltoluene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
4-Methyl-2-pentanone	ND	ug/kg dry	11.0	11.0	1	05/03/24	05/03/24 19:23	LL
Methylene chloride	25.8	L ug/kg dry	22.1	22.1	1	05/03/24	05/03/24 19:23	LL
Naphthalene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
n-Propylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Styrene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Tetrachloroethene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Toluene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2,3-Trichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2,4-Trichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1,1-Trichloroethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,1,2-Trichloroethane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Trichloroethene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,2,3-Trichloropropane	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
• •								

Pakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

2-10

4050124-12 (Soil) Sampled on: 05/01/24 14:15

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pı	repared by 5030-GC	CMS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Vinyl chloride	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
o-Xylene	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
m- & p-Xylenes	ND	ug/kg dry	5.5	2.2	1	05/03/24	05/03/24 19:23	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	97 %	05/03/24		05/03/24 19:23		
Surrogate: Toluene-d8		75-120	98 %	05/03/24		05/03/24 19:23		
Surrogate: 4-Bromofluorobenzene		65-120	100 %	05/03/24		05/03/24 19:23		
GASOLINE RANGE ORGANICS	S BY EPA 5	5030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.11	0.11	1	05/07/24	05/07/24 15:58	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	104 %	05/07/24		05/07/24 15:58		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Sox	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	8.8	8.8	1	05/02/24	05/03/24 22:06	EH
Surrogate: o-Terphenyl		70-130	108 %	05/02/24		05/03/24 22:06		
PERCENT SOLIDS BY ASTM D	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	91	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Chemistry Services

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project Number: 47:18315-A Project Manager: Nick Stella

Maryland Spectral Services does not maintain certification for the following analytical parameters:

Maryland Spectral Services	
Matrix, Method, Analyte	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kakecfa Koms

Analytical Chemistry Services

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 13:37

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

Notes and Definitions

S-PCB	This QC sample was spiked for EPA 8081B only. EPA 8082A spike recovery was not evaluated.
QM-4X	The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
QM-06	Due to non-homogeneity of the QC sample matrix, the MS/MSD or MS/DUP did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS percent recoveries.
L	Analyte is a possible laboratory contaminant
J	Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).
RE	Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified with a sample qualifier.
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
%-Solids	Percent Solids is a supportive test and as such does not require accredidation

If this report contains any samples analyzed for gasoline range organics (GRO) by EPA Method 8015C and no trip blank was shipped, stored, and received with the sample(s) as required by Section 3.1 of the EPA Method, the sample analysis contained in this report cannot exclude the possibility that any reportable GRO measurement was due to environmental contamination of the sample during shipping or storage.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Company Name:		Project	Mana	agei	r:							Anal	ysis R	teque	estec	<u></u>	CHAI	N-OF-CL	JST	ODY RECORD
ECS Baltimore		Nick S	tella	ı]				
Project Name:	Creek	Project	1D: 315	;-f	7							0							nter	Services, Inc. Drive, Suite G D 21227
Sampler(s):		P.O. Nu	mber	r:								6	7199							x 410-247-7602
Nick Stella											,	10	1 1				f '	eporung@	musi	pectral.com
State of Origin:		•								710	680	tals					Matrix Codes:	NPW - noi DW - drinl		
Field Sample ID:	Date	Time	DW	NPW	Soil	Other	Grab	Composite	# of containers	PAHIS 22	PCB . 80	11/2	Hex Chr				 Preservative	Field No	tes	MSS Lab ID
0u-2A	5/1/24	1500		***********	λ			X	2	X	λ	χ	X							4050124-01
04-2B		1525			\mathcal{I}			λ		Yu	X	1	7							-02
04-2C		1510			χ			χ		V	¥	У	X							-03
0u-2D		1515			Х			Х	1	V	χ	X	у							-04
Relinquished by: (Sfanature) (Printed)	Date 5/1/5	>4	Reline (Print		ned b	y: (Si <u>c</u>	gnatu	re)	~			follo	indic wing re rec	certi	ficat		Virginia VELA Pennsylvania West Virginia	NELAP		MD Drinking Water VA Drinking Water Other
Nick Stella											Turr	n Aro	und ⁻	Γime	:		Delivery Met	****	Lab	Use:
Relinquished by: (Signature)	Date 5/1/		Recei		by lat		natu	re)					mal (/)		□ Courier			np: <u>3, 0 °</u> c
(Printed)	l .		/Print	ted)					·		Z.	5 da 4 da	y .v				⊠ Client □ UPS			Received on Ice Received Same Day
	16;	ري (ک	·	Jo	red	ev	T	u	لاه	_		3 da	•				☐ Fed Ex		-	T-41
Special Instructions / QC Require	ements 8	Comme	nts:		red	ſ	<u> </u>						, h (2 d	ay)			□ USPS		Sam	ple Disposal:
					l D	٦	_						t Day				□ Other			Return to Client
													er:							Disposal by lab
												Spec	cific E	ue E	ate:				П	Archive for days

Company Name:		Project	Man	ager	r:							Anal	ysis R	Reque	estec	ł	CHAI	N-OF-CUS	STO	DY RECORD
ECS Baltimore		Nick S	tella	3					İ											
Project Name:		Project		_														ryland Spect		Services, Inc. Orive, Suite G
Saddle Creek		183	<u> 75</u>	-11	1													Baltimore,	, MD	21227
Sampler(s):		P.O. Nu	mbe	r:						N	\sim						1			410-247-7602
Nick Stella										80	0						11	eporting@m	aspe	etral.com
State of Origin: My										,	ς,	17					Matrix Codes:	NPW - non- DW - drinkir		
Field Sample ID:	Date	Time	DW	NPW	Soil	Other	Grab	Composite	# of containers	1PW-DRO	10H766) 's					Preservative	Field Note	≥s	MSS Lab ID
2-01	5/1/24	1015			λ		χ)	7	Y	\mathcal{X}							Ĺ	1050124-05
2-03		0430			λ		X			λ	Х	\nearrow								-06
2-04		1045			/ X		1			χì	X	X								-07
2-05		1100			X		΄χ			У	V	D								-08
2-06		1330			χ		λ			¥	χĹ	X								-09
2.07		1145			χ		χ			þ	X	∞								-10
2.09		1430			<i>X</i>		χ			Ю	Ϋ́	٨								-11
2-10	7	1415			λ		Χ)	φ	χ	У								-12
Relinquished by: (Signature)		/Time	Relin	quist	hed b	y: (Sig	gnatu	ire)				lease					Virginia VELA			1D Drinking Water
MILKEL YELL	3/1/	29	/Duite	11							the	follo				ions	Pennsylvania			'A Drinking Water
(Printed) Nick Stella			(Prin	tea)									re rec	•			West Virginia			other
Relinquished by: (Signature)	Date	/Time	Rece	ived	by lal	 b: <i>(Siç</i>	 anatu	ire)			i	n Aro Nor:					Delivery Metl	1	ab U emn	o: <u>3,0 °</u> °C
	5/1	-			in			_ ′				5 da		-	()		⊠ Client			eceived on Ice
(Printed)	16:0		(Prin	ited)							7	4 da	, y				□ UPS			eceived Same Day
					ned.	en'	Ju	LUK	<u></u>		1	3 da	•				□ Fed Ex	L		T-41
Special Instructions / QC Requir	ements 8	k Comme	ents:		2	7	~ ۲	7				Rusl					□ USPS	S		ole Disposal:
						C	` '	0 -					t Day				☐ Other			eturn to Client
												Spe	er:		\a+a.			1		oisposal by lab archive for days
										,	I I 1		.4116.1	71 IP I	me.		1	1	1 I A	TOUVE OF DAVS

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

09 May 2024

Nick Stella ECS-Baltimore 1340 Charwood Rd, Suite A Baltimore, MD 21076

RE: Saddle Creek

Enclosed are the results of analyses for samples received by the laboratory on 05/02/24 15:48.

Maryland Spectral Services, Inc. is a TNI 2016 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2016 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2016 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rabecka Koons

Quality Assurance Officer

lakecka Koms

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
OU-1A		4050228-01	Soil	05/02/24 13:30	05/02/24 15:48
OU-1B		4050228-02	Soil	05/02/24 13:35	05/02/24 15:48
OU-1C		4050228-03	Soil	05/02/24 13:40	05/02/24 15:48
OU-1D		4050228-04	Soil	05/02/24 13:45	05/02/24 15:48
1-01		4050228-05	Soil	05/02/24 09:30	05/02/24 15:48
1-03		4050228-06	Soil	05/02/24 10:30	05/02/24 15:48
1-04		4050228-07	Soil	05/02/24 13:00	05/02/24 15:48
1-05		4050228-08	Soil	05/02/24 11:00	05/02/24 15:48
1-06		4050228-09	Soil	05/02/24 10:45	05/02/24 15:48
1-08		4050228-10	Soil	05/02/24 11:15	05/02/24 15:48
1-09		4050228-11	Soil	05/02/24 11:45	05/02/24 15:48
1-10		4050228-12	Soil	05/02/24 11:30	05/02/24 15:48
GW1-01		4050228-13	Nonpotable Water	05/02/24 12:10	05/02/24 15:48
GW1-03		4050228-14	Nonpotable Water	05/02/24 12:30	05/02/24 15:48
GW1-08		4050228-15	Nonpotable Water	05/02/24 12:20	05/02/24 15:48

4050228-16

Nonpotable Water

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

05/02/24 12:00

Rabecka Koons, Quality Assurance Officer

GW1-09

05/02/24 15:48

Analytical Results

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Number: 47:18315-A Project Manager: Nick Stella

OU-1A

4050228-01 (Soil) Sampled on: 05/02/24 13:30

Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Semivolatile Organics by EPA 8			. ,	. ,	Dilution	Trepared	7 maryzed	7 tharyst
Acenaphthene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Acenaphthylene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Anthracene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Benzo[a]anthracene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Benzo[b]fluoranthene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Benzo[k]fluoranthene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Benzo[a]pyrene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Chrysene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Fluoranthene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Fluorene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
2-Methylnaphthalene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Naphthalene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Phenanthrene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Pyrene	ND	ug/kg dry	86	86	1	05/03/24	05/06/24 15:24	EH
Surrogate: 2-Fluorophenol		23-121	87 %	05/03/24		05/06/24 15:24		
Surrogate: Phenol-d5		24-113	90 %	05/03/24		05/06/24 15:24		
Surrogate: Nitrobenzene-d5		23-120	91 %	05/03/24		05/06/24 15:24		
Surrogate: 2,4,6-Tribromophenol		19-122	90 %	05/03/24		05/06/24 15:24		
Surrogate: 2-Fluorobiphenyl		30-115	89 %	05/03/24		05/06/24 15:24		
Surrogate: Terphenyl-d14		18-137	91 %	05/03/24		05/06/24 15:24		
PERCENT SOLIDS BY ASTM	D2216-05 Pro	epared by Percent S	olids					
Percent Solids	93	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Manager: Nick Stella

OU-1A

4050228-01 (Soil) Sampled on: 05/02/24 13:30

			-					
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
POLYCHLORINATED BIPHENYI	S BY EPA 80	82A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestPC	СВ			
Aroclor-1016	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1221	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1232	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1242	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1248	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1254	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1260	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1262	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Aroclor-1268	ND	ug/kg dry	43.1	43.1	1	05/03/24	05/08/24 21:37	ARS
Surrogate: Tetrachloro-m-xylene		40-150	88 %	05/03/2	4	05/08/24 21:37		
Surrogate: Decachlorobiphenyl		40-150	83 %	05/03/2	4	05/08/24 21:37		
Total Metals Analysis by EPA 60	20B Prepare	d by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Arsenic	1.88	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Beryllium	ND	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Cadmium	ND	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Chromium	10.5	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Copper	5.06	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Lead	4.46	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Mercury	0.0148	mg/kg dry	0.0135	0.0135	1	05/02/24	05/03/24 17:29	AWH
Nickel	2.88	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Selenium	0.747	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Silver	ND	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Thallium	ND	mg/kg dry	0.270	0.270	1	05/02/24	05/03/24 17:29	AWH
Zinc	8.65	mg/kg dry	1.35	1.35	1	05/02/24	05/03/24 17:29	AWH

custody document.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-1A

4050228-01 (Soil) Sampled on: 05/02/24 13:30

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-H	exavalent Cl	romium Digestio	n				
Chromium, Hexavalent	ND		mg/kg dry	0.216	0.162	1	05/07/24	05/08/24 20:56	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kakecfa Koms

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-1B

4050228-02 (Soil) Sampled on: 05/02/24 13:35

	D 1	NT TT 1-	Reporting	Detection	D'' - '	D 1		
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analys
Semivolatile Organics by EPA 8								
Acenaphthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Acenaphthylene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Anthracene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Benzo[a]anthracene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Benzo[b]fluoranthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Benzo[k]fluoranthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Benzo[a]pyrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Chrysene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Fluoranthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Fluorene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
2-Methylnaphthalene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Naphthalene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Phenanthrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Pyrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 15:45	EH
Surrogate: 2-Fluorophenol		23-121	89 %	05/03/24		05/06/24 15:45		
Surrogate: Phenol-d5		24-113	91 %	05/03/24		05/06/24 15:45		
Surrogate: Nitrobenzene-d5		23-120	89 %	05/03/24		05/06/24 15:45		
Surrogate: 2,4,6-Tribromophenol		19-122	89 %	05/03/24		05/06/24 15:45		
Surrogate: 2-Fluorobiphenyl		30-115	86 %	05/03/24		05/06/24 15:45		
Surrogate: Terphenyl-d14		18-137	93 %	05/03/24		05/06/24 15:45		
PERCENT SOLIDS BY ASTM	D2216-05 Pr	epared by Percent S	olids					
Percent Solids	90	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-1B

4050228-02 (Soil) Sampled on: 05/02/24 13:35

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
POLYCHLORINATED BIPHEN	YLS BY EPA 808	32A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestPC	СВ			
Aroclor-1016	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1221	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1232	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1242	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1248	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1254	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1260	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1262	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Aroclor-1268	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 21:53	ARS
Surrogate: Tetrachloro-m-xylene		40-150	88 %	05/03/2	4	05/08/24 21:53		
Surrogate: Decachlorobiphenyl		40-150	85 %	05/03/2	4	05/08/24 21:53		
Total Metals Analysis by EPA (6020B Prepared	l by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Arsenic	2.93	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Beryllium	0.315	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Cadmium	ND	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Chromium	15.4	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Copper	5.65	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Lead	4.22	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Mercury	0.0172	mg/kg dry	0.0139	0.0139	1	05/02/24	05/03/24 17:31	AWH
Nickel	2.93	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Selenium	0.854	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Silver	ND	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Thallium	ND	mg/kg dry	0.277	0.277	1	05/02/24	05/03/24 17:31	AWH
Zinc	8.72	mg/kg dry	1.39	1.39	1	05/02/24	05/03/24 17:31	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-1B

4050228-02 (Soil) Sampled on: 05/02/24 13:35

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-H	exavalent Cl	romium Digestio	n				
Chromium, Hexavalent	ND		mg/kg dry	0.222	0.166	1	05/07/24	05/08/24 21:14	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lakecha Koms

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-1C

4050228-03 (Soil) Sampled on: 05/02/24 13:40

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Semivolatile Organics by EPA 8	270D (GC/M	S) Prepared by 3540	0-GCMS(Soxhlo	et)		-	·	-
Acenaphthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Acenaphthylene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Anthracene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Benzo[a]anthracene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Benzo[b]fluoranthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Benzo[k]fluoranthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Benzo[a]pyrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Chrysene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Fluoranthene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Fluorene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
2-Methylnaphthalene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Naphthalene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Phenanthrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Pyrene	ND	ug/kg dry	89	89	1	05/03/24	05/06/24 16:06	EH
Surrogate: 2-Fluorophenol		23-121	90 %	05/03/24		05/06/24 16:06		
Surrogate: Phenol-d5		24-113	92 %	05/03/24		05/06/24 16:06		
Surrogate: Nitrobenzene-d5		23-120	93 %	05/03/24		05/06/24 16:06		
Surrogate: 2,4,6-Tribromophenol		19-122	93 %	05/03/24		05/06/24 16:06		
Surrogate: 2-Fluorobiphenyl		30-115	89 %	05/03/24		05/06/24 16:06		
Surrogate: Terphenyl-d14		18-137	95 %	05/03/24		05/06/24 16:06		
PERCENT SOLIDS BY ASTM	D2216-05 Pro	epared by Percent S	olids					
Percent Solids	90	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Number: 47:18315-A Project Manager: Nick Stella

OU-1C

4050228-03 (Soil) Sampled on: 05/02/24 13:40

			inpica on ocioz					
Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analys
POLYCHLORINATED BIPHENY	YLS BY EPA 8082	2A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestP(СВ			
Aroclor-1016	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1221	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1232	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1242	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1248	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1254	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1260	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1262	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Aroclor-1268	ND	ug/kg dry	44.4	44.4	1	05/03/24	05/08/24 22:10	ARS
Surrogate: Tetrachloro-m-xylene		40-150	84 %	05/03/2	4	05/08/24 22:10		
Surrogate: Decachlorobiphenyl		40-150	83 %	05/03/2	4	05/08/24 22:10		
Total Metals Analysis by EPA 6	020B Prepared	by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Arsenic	2.59	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Beryllium	ND	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Cadmium	ND	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Chromium	10.7	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Copper	6.49	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Lead	3.96	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Mercury	0.0176	mg/kg dry	0.0139	0.0139	1	05/02/24	05/03/24 17:34	AWH
Nickel	2.53	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Selenium	1.07	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Silver	ND	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Γhallium	ND	mg/kg dry	0.278	0.278	1	05/02/24	05/03/24 17:34	AWH
Zinc	8.81	mg/kg dry	1.39	1.39	1	05/02/24	05/03/24 17:34	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

e nelacie

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-1C

4050228-03 (Soil) Sampled on: 05/02/24 13:40

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 7	199 Prepared by	3060A-He	xavalent Cl	romium Digestio	n				
Chromium, Hexavalent	ND		mg/kg dry	0.222	0.167	1	05/07/24	05/08/24 21:32	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Pakecka Koms

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-1D

4050228-04 (Soil) Sampled on: 05/02/24 13:45

			inpicu on. 05/02					
A	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	D J	A l	A I
Analyte					Dilution	Prepared	Analyzed	Analys
Semivolatile Organics by EPA 8					1	05/03/24	05/06/24 16:26	EH
Acenaphthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH EH
Acenaphthylene	ND	ug/kg dry	92	92	1			
Anthracene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Benzo[a]anthracene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Benzo[b]fluoranthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Benzo[k]fluoranthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Benzo[g,h,i]perylene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Benzo[a]pyrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Chrysene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Dibenz[a,h]anthracene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Fluoranthene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Fluorene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Indeno[1,2,3-cd]pyrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
2-Methylnaphthalene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Naphthalene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Phenanthrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Pyrene	ND	ug/kg dry	92	92	1	05/03/24	05/06/24 16:26	EH
Surrogate: 2-Fluorophenol		23-121	86 %	05/03/24		05/06/24 16:26		
Surrogate: Phenol-d5		24-113	91 %	05/03/24		05/06/24 16:26		
Surrogate: Nitrobenzene-d5		23-120	93 %	05/03/24		05/06/24 16:26		
Surrogate: 2,4,6-Tribromophenol		19-122	96 %	05/03/24		05/06/24 16:26		
Surrogate: 2-Fluorobiphenyl		30-115	91 %	05/03/24		05/06/24 16:26		
Surrogate: Terphenyl-d14		18-137	97 %	05/03/24		05/06/24 16:26		
PERCENT SOLIDS BY ASTM	D2216-05 Pr	epared by Percent S	Solids					
Percent Solids	87	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

OU-1D

4050228-04 (Soil) Sampled on: 05/02/24 13:45

			inpica on octor					
Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analys
POLYCHLORINATED BIPHENY	YLS BY EPA 8082	2A (GC/ECD) Prepa	red by 3540-GC(Soxhlet) ClPestP0	СВ			
Aroclor-1016	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1221	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1232	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1242	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1248	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1254	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1260	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1262	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Aroclor-1268	ND	ug/kg dry	45.9	45.9	1	05/03/24	05/08/24 22:26	ARS
Surrogate: Tetrachloro-m-xylene		40-150	87 %	05/03/2	4	05/08/24 22:26		
Surrogate: Decachlorobiphenyl		40-150	81 %	05/03/2	14	05/08/24 22:26		
Total Metals Analysis by EPA 6	020B Prepared	by 3050B-Metals	Digestion					
Antimony	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Arsenic	1.97	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Beryllium	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Cadmium	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Chromium	9.82	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Copper	4.45	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Lead	3.09	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Mercury	0.0199	mg/kg dry	0.0143	0.0143	1	05/02/24	05/03/24 17:37	AWH
Nickel	2.88	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Selenium	1.23	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Silver	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Γhallium	ND	mg/kg dry	0.287	0.287	1	05/02/24	05/03/24 17:37	AWH
Zinc	8.26	mg/kg dry	1.43	1.43	1	05/02/24	05/03/24 17:37	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

OU-1D

4050228-04 (Soil) Sampled on: 05/02/24 13:45

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Hexavalent Chromium by EPA 71	99 Prepared by	3060A-He	xavalent Cl	romium Digestio	n				
Chromium, Hexavalent	ND		mg/kg dry	0.229	0.172	1	05/07/24	05/08/24 21:49	CRP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kabacha Koms

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-01 4050228-05 (Soil)

Sampled on: 05/02/24 09:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pre	pared by 5030-GC	CMS					
Acetone	ND	ug/kg dry	10.8	10.8	1	05/07/24	05/07/24 14:45	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	53.8	53.8	1	05/07/24	05/07/24 14:45	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Benzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Bromobenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Bromochloromethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Bromodichloromethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Bromoform	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Bromomethane	ND	ug/kg dry	5.4	5.4	1	05/07/24	05/07/24 14:45	LL
tert-Butanol (TBA)	ND	ug/kg dry	53.8	53.8	1	05/07/24	05/07/24 14:45	LL
2-Butanone (MEK)	ND	ug/kg dry	10.8	10.8	1	05/07/24	05/07/24 14:45	LL
n-Butylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
sec-Butylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
tert-Butylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Carbon disulfide	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Carbon tetrachloride	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Chlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Chloroethane	ND	ug/kg dry	5.4	5.4	1	05/07/24	05/07/24 14:45	LL
Chloroform	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Chloromethane	ND	ug/kg dry	5.4	5.4	1	05/07/24	05/07/24 14:45	LL
2-Chlorotoluene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
4-Chlorotoluene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Dibromochloromethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Dibromomethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2-Dichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,3-Dichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,4-Dichlorobenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Dichlorodifluoromethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1-Dichloroethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2-Dichloroethane	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1-Dichloroethene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rakela Kons

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-01 4050228-05 (Soil)

Sampled on: 05/02/24 09:30

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GO	C/MS) Pr	epared by	5030-GC	MS (continued)					
cis-1,2-Dichloroethene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
trans-1,2-Dichloroethene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Dichlorofluoromethane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2-Dichloropropane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,3-Dichloropropane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
2,2-Dichloropropane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1-Dichloropropene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
cis-1,3-Dichloropropene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
trans-1,3-Dichloropropene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Diisopropyl ether (DIPE)	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Ethyl tert-butyl ether (ETBE)	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Ethylbenzene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Hexachlorobutadiene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
2-Hexanone	ND		ug/kg dry	10.8	10.8	1	05/07/24	05/07/24 14:45	LL
Isopropylbenzene (Cumene)	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
4-Isopropyltoluene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
4-Methyl-2-pentanone	ND		ug/kg dry	10.8	10.8	1	05/07/24	05/07/24 14:45	LL
Methylene chloride	28.2	L	ug/kg dry	21.5	21.5	1	05/07/24	05/07/24 14:45	LL
Naphthalene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
n-Propylbenzene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Styrene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1,1,2-Tetrachloroethane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1,2,2-Tetrachloroethane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Tetrachloroethene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Toluene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2,3-Trichlorobenzene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2,4-Trichlorobenzene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1,1-Trichloroethane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,1,2-Trichloroethane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Trichloroethene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Trichlorofluoromethane (Freon 11)	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,2,3-Trichloropropane	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL

lakecka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-01

4050228-05 (Soil) Sampled on: 05/02/24 09:30

		54	impica on. 05/0/	2/24 07.50				
Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (0	GC/MS) Pr		. ,			1	<u> </u>	
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Vinyl chloride	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
o-Xylene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
m- & p-Xylenes	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 14:45	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	95 %	05/07/24		05/07/24 14:45		
Surrogate: Toluene-d8		75-120	98 %	05/07/24		05/07/24 14:45		
Surrogate: 4-Bromofluorobenzene		65-120	99 %	05/07/24		05/07/24 14:45		
GASOLINE RANGE ORGANICS	S BY EPA 5	030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.11	0.11	1	05/08/24	05/08/24 12:51	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	103 %	05/08/24		05/08/24 12:51		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Sox	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	8.6	8.6	1	05/03/24	05/06/24 14:44	TS
Surrogate: o-Terphenyl		70-130	98 %	05/03/24		05/06/24 14:44		
PERCENT SOLIDS BY ASTM D	2216-05 Pro	epared by Percent S	Solids					
Percent Solids	93	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-03 4050228-06 (Soil) Sampled on: 05/02/24 10:30

			mpled on: 05/02	724 10.50				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pr	epared by 5030-GC	MS					
Acetone	13.0	ug/kg dry	12.4	12.4	1	05/07/24	05/07/24 15:13	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	62.2	62.2	1	05/07/24	05/07/24 15:13	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Benzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Bromobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Bromochloromethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Bromodichloromethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Bromoform	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Bromomethane	ND	ug/kg dry	6.2	6.2	1	05/07/24	05/07/24 15:13	LL
ert-Butanol (TBA)	ND	ug/kg dry	62.2	62.2	1	05/07/24	05/07/24 15:13	LL
2-Butanone (MEK)	ND	ug/kg dry	12.4	12.4	1	05/07/24	05/07/24 15:13	LL
n-Butylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
sec-Butylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
ert-Butylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Carbon disulfide	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Carbon tetrachloride	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Chlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Chloroethane	ND	ug/kg dry	6.2	6.2	1	05/07/24	05/07/24 15:13	LL
Chloroform	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Chloromethane	ND	ug/kg dry	6.2	6.2	1	05/07/24	05/07/24 15:13	LL
2-Chlorotoluene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
4-Chlorotoluene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Dibromochloromethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Dibromomethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2-Dichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,3-Dichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1.4-Dichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Dichlorodifluoromethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1.1-Dichloroethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2-Dichloroethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1.1-Dichloroethene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL

Ratecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-03

4050228-06 (Soil) Sampled on: 05/02/24 10:30

rans-1,2-Dichloroethene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL Dichloroftoromerdmane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL L2-Dichloropropane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL L2-Dichloropropane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL L2-Dichloropropane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL L2-Dichloropropane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL L2-Dichloropropane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropane ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-Dichloropropene ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg dry 6.2 2.5 1 0507/24 0507/24 15:13 LL US-DICHLOROPROPENE ND ug/kg					Reporting	Detection				
Size 1,2-Dichloroethene ND	Analyte	Result	Notes Ut	nits	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Paras 1,2-Dichloroethene	Volatile Organics by EPA 8260B (GC/MS) Pr	epared by 503	80-GC	MS (continued)	1				
Dicklorofluoromethane	cis-1,2-Dichloroethene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2-Dichloropropane	trans-1,2-Dichloroethene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,3-Dichloropropane ND	Dichlorofluoromethane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Dispersion	1,2-Dichloropropane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
	1,3-Dichloropropane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Langer Company Langer	2,2-Dichloropropane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Trans-1,3-Dichloropropene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (DIPE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Diisopropyl ether	1,1-Dichloropropene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Dissopropyl ether (DIPE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene Dishlenzene ND ug/kg dry 0.2 2.5 1 05/07/24 05/07/24 15:13 LL Eth	cis-1,3-Dichloropropene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Ethyl terr-buryl ether (ETBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) Ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) Ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) Ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) Ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) Ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Ethylbenzene (MTBE) Ug/kg dry 6.2 2.5 1	trans-1,3-Dichloropropene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Ethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Hexachlorobutadiene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 24.9 24.9 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Haspropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/0	Diisopropyl ether (DIPE)	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Hexachlorobutadiene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 2-Hexanone ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL (sopropylbenzene (Cumene) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene (ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene (ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene ND ug/kg dry 24.9 24.9 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (sopropylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL (styrene ND ug/kg dry 6.2 2.5 1	Ethyl tert-butyl ether (ETBE)	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Part	Ethylbenzene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Sepropy S	Hexachlorobutadiene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
H-Isopropyltoluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL H-Methyl-2-pentanone ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL H-Methyl-2-pentanone ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Methylene chloride 32.5 L ug/kg dry 24.9 24.9 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL N-Propylbenzene ND ug/kg	2-Hexanone	ND	ug/k	g dry	12.4	12.4	1	05/07/24	05/07/24 15:13	LL
Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 4-Methyl-2-pentanone ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Methylene chloride 32.5 L ug/kg dry 24.9 24.9 1 05/07/24 05/07/24 15:13 LL Naphthalene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL styrene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Isopropylbenzene (Cumene)	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
4-Methyl-2-pentanone ND ug/kg dry 12.4 12.4 1 05/07/24 05/07/24 15:13 LL Methylene chloride 32.5 L ug/kg dry 24.9 24.9 1 05/07/24 05/07/24 15:13 LL Naphthalene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/	4-Isopropyltoluene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Methylene chloride 32.5 L ug/kg dry 24.9 24.9 1 05/07/24 05/07/24 15:13 LL Naphthalene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Styrene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2	Methyl tert-butyl ether (MTBE)	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Naphthalene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL styrene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL styrene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL styrene ND ug/kg dry 6.2 2.5 1 05/07/24 15:13 LL styrene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24	4-Methyl-2-pentanone	ND	ug/k	g dry	12.4	12.4	1	05/07/24	05/07/24 15:13	LL
n-Propylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Styrene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Methylene chloride	32.5	L ug/k	g dry	24.9	24.9	1	05/07/24	05/07/24 15:13	LL
Styrene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,4-Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Naphthalene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,1,1,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	n-Propylbenzene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,1,2,2-Tetrachloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Styrene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Tetrachloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	1,1,1,2-Tetrachloroethane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Toluene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	1,1,2,2-Tetrachloroethane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2,3-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Tetrachloroethene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2,4-Trichlorobenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Toluene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,1,1-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL 1,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	1,2,3-Trichlorobenzene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
I,1,2-Trichloroethane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	1,2,4-Trichlorobenzene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Trichloroethene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	1,1,1-Trichloroethane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	1,1,2-Trichloroethane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
	Trichloroethene	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,2,3-Trichloropropane ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 15:13 LL	Trichlorofluoromethane (Freon 11)	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
	1,2,3-Trichloropropane	ND	ug/k	g dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Number: 47:18315-A Project Manager: Nick Stella

Project: Saddle Creek

1-03

4050228-06 (Soil) Sampled on: 05/02/24 10:30

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pı	repared by 5030-GC	CMS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Vinyl chloride	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
o-Xylene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
m- & p-Xylenes	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 15:13	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	96 %	05/07/24		05/07/24 15:13		
Surrogate: Toluene-d8		75-120	98 %	05/07/24		05/07/24 15:13		
Surrogate: 4-Bromofluorobenzene		65-120	102 %	05/07/24		05/07/24 15:13		
GASOLINE RANGE ORGANICS	S BY EPA 5	5030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/08/24	05/08/24 13:19	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	103 %	05/08/24		05/08/24 13:19		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Sox	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.9	9.9	1	05/03/24	05/06/24 15:13	TS
Surrogate: o-Terphenyl		70-130	73 %	05/03/24		05/06/24 15:13		
PERCENT SOLIDS BY ASTM D	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	80	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-04 4050228-07 (Soil)

Sampled on: 05/02/24 13:00

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Pr	epared by	5030-GC	MS				<u> </u>	
Acetone	51.5		ug/kg dry	10.9	10.9	1	05/07/24	05/07/24 15:40	LL
tert-Amyl alcohol (TAA)	ND	1	ug/kg dry	54.4	54.4	1	05/07/24	05/07/24 15:40	LL
tert-Amyl methyl ether (TAME)	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Benzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Bromobenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Bromochloromethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Bromodichloromethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Bromoform	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Bromomethane	ND	1	ug/kg dry	5.4	5.4	1	05/07/24	05/07/24 15:40	LL
tert-Butanol (TBA)	ND	1	ug/kg dry	54.4	54.4	1	05/07/24	05/07/24 15:40	LL
2-Butanone (MEK)	ND	1	ug/kg dry	10.9	10.9	1	05/07/24	05/07/24 15:40	LL
n-Butylbenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
sec-Butylbenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
tert-Butylbenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Carbon disulfide	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Carbon tetrachloride	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Chlorobenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Chloroethane	ND	1	ug/kg dry	5.4	5.4	1	05/07/24	05/07/24 15:40	LL
Chloroform	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Chloromethane	ND	1	ug/kg dry	5.4	5.4	1	05/07/24	05/07/24 15:40	LL
2-Chlorotoluene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
4-Chlorotoluene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2-Dibromo-3-chloropropane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Dibromochloromethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2-Dibromoethane (EDB)	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Dibromomethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2-Dichlorobenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,3-Dichlorobenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,4-Dichlorobenzene	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Dichlorodifluoromethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,1-Dichloroethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2-Dichloroethane	ND	1	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,1-Dichloroethene	ND		ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Karacka Koms

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-04

4050228-07 (Soil) Sampled on: 05/02/24 13:00

			Sar	npled on: 05/02	/24 13:00				
				Reporting	Detection				
Analyte	Result 1	Notes U	nits	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Prej	pared by 50	30-GC	MS (continued)					
cis-1,2-Dichloroethene	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
trans-1,2-Dichloroethene	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Dichlorofluoromethane	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2-Dichloropropane	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,3-Dichloropropane	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
2,2-Dichloropropane	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,1-Dichloropropene	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
cis-1,3-Dichloropropene	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
trans-1,3-Dichloropropene	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Diisopropyl ether (DIPE)	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Ethylbenzene	ND	ug/l	cg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Hexachlorobutadiene	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
2-Hexanone	ND	ug/l	cg dry	10.9	10.9	1	05/07/24	05/07/24 15:40	LL
sopropylbenzene (Cumene)	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
4-Isopropyltoluene	ND	ug/l	cg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Methyl tert-butyl ether (MTBE)	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
4-Methyl-2-pentanone	ND	ug/l	cg dry	10.9	10.9	1	05/07/24	05/07/24 15:40	LL
Methylene chloride	27.5	L ug/l	cg dry	21.7	21.7	1	05/07/24	05/07/24 15:40	LL
Naphthalene	ND	ug/l	cg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
n-Propylbenzene	ND	ug/l	cg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Styrene	ND	ug/l	cg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,1,1,2-Tetrachloroethane	ND	ug/l	cg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,1,2,2-Tetrachloroethane	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Tetrachloroethene	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Toluene	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2,3-Trichlorobenzene	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
,2,4-Trichlorobenzene	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
,1,1-Trichloroethane	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,1,2-Trichloroethane	ND	ug/l	kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Trichloroethene	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Trichlorofluoromethane (Freon 11)	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,2,3-Trichloropropane	ND	ug/l	g dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelac :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

05/09/24

1-04

4050228-07 (Soil) Sampled on: 05/02/24 13:00

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	CMS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Vinyl chloride	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
o-Xylene	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
m- & p-Xylenes	ND	ug/kg dry	5.4	2.2	1	05/07/24	05/07/24 15:40	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	97 %	05/07/24		05/07/24 15:40		
Surrogate: Toluene-d8		75-120	100 %	05/07/24		05/07/24 15:40		
Surrogate: 4-Bromofluorobenzene		65-120	98 %	05/07/24		05/07/24 15:40		
GASOLINE RANGE ORGANICS	BY EPA 5	030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.11	0.11	1	05/08/24	05/08/24 13:47	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	102 %	05/08/24		05/08/24 13:47		
DIESEL RANGE ORGANICS BY	EPA 3540/	/8015C Prepared b	y 3540-GC(Soxl	ılet)				
Diesel-Range Organics (C10-C28)	24.2	mg/kg dry	8.7	8.7	1	05/03/24	05/06/24 15:43	TS
Surrogate: o-Terphenyl		70-130	70 %	05/03/24		05/06/24 15:43		
PERCENT SOLIDS BY ASTM D2	2216-05 Pre	epared by Percent S	Solids					
Percent Solids	92	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Number: 47:18315-A Project Manager: Nick Stella

1-05 4050228-08 (Soil) Sampled on: 05/02/24 11:00

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pro	epared by 5030-GC		· /		*	-	
Acetone	101	ug/kg dry	11.9	11.9	1	05/07/24	05/07/24 16:08	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	59.6	59.6	1	05/07/24	05/07/24 16:08	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Benzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Bromobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Bromochloromethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Bromodichloromethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Bromoform	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Bromomethane	ND	ug/kg dry	6.0	6.0	1	05/07/24	05/07/24 16:08	LL
tert-Butanol (TBA)	ND	ug/kg dry	59.6	59.6	1	05/07/24	05/07/24 16:08	LL
2-Butanone (MEK)	ND	ug/kg dry	11.9	11.9	1	05/07/24	05/07/24 16:08	LL
n-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
sec-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
tert-Butylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Carbon disulfide	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Carbon tetrachloride	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Chlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Chloroethane	ND	ug/kg dry	6.0	6.0	1	05/07/24	05/07/24 16:08	LL
Chloroform	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Chloromethane	ND	ug/kg dry	6.0	6.0	1	05/07/24	05/07/24 16:08	LL
2-Chlorotoluene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
4-Chlorotoluene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Dibromochloromethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Dibromomethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,3-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,4-Dichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Dichlorodifluoromethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,1-Dichloroethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2-Dichloroethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,1-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-05 4050228-08 (Soil)

Sampled on: 05/02/24 11:00

Notatile Organics by EPA 8260B (GC/MS) Prepared by 5030-GCMS (continued) Sist 1,2-Dichlorocthene ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL rans-1,2-Dichlorocthene ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,2-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,2-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,3-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,3-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 050724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2.4 1 0507724 0507724 16.08 LL 1,1-Dichloropropane ND wg/kg dry 6.0 2				Reporting	Detection				
1. 1. 1. 1. 1. 1. 1. 1.	Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Trans-1,2-Dichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichlorofluoromethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16/08 1.1. Dichloropropene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16	Volatile Organics by EPA 8260B (GC/MS) Pre	pared by 5030-GC	CMS (continued)				
Dichloroffuoromethane	cis-1,2-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2-Dichloropropane	trans-1,2-Dichloroethene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1. 1. 1. 1. 1. 1. 1. 1.	Dichlorofluoromethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1.1-Dichloropropane	1,2-Dichloropropane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Li-Dichloropropene ND	1,3-Dichloropropane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1. 1. 1. 1. 1. 1. 1. 1.	2,2-Dichloropropane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Trans-1,3-Dichloropropene ND	1,1-Dichloropropene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Disspropy ether (DIPE) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16.08 LL	cis-1,3-Dichloropropene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Sithyl tert-butyl ether (ETBE) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	trans-1,3-Dichloropropene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Ethylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL Hexachlorobutadiene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexachlorobutadiene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Ethexanone ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL Esopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hespropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hethylene chloride ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL Hethylene chloride ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL Hethylene chloride ND ug/kg dry 23.9 23.9 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Herpopylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexperical ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Hexpe	Diisopropyl ether (DIPE)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Acceptance ND	Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
LeHexanone ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL sopropylbenzene (Cumene) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 23.9 23.9 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL H-Isopropyltoluene ND ug/kg dry 6.0 2.4	Ethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Sopropylbenzene (Cumene) ND	Hexachlorobutadiene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Langer L	2-Hexanone	ND	ug/kg dry	11.9	11.9	1	05/07/24	05/07/24 16:08	LL
Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 4-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL Methylene chloride 33.6 L ug/kg dry 23.9 23.9 1 05/07/24 05/07/24 16:08 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL styrene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,3-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,2,3-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1.1,1-Trichloroe	Isopropylbenzene (Cumene)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
14-Methyl-2-pentanone ND ug/kg dry 11.9 11.9 1 05/07/24 05/07/24 16:08 LL Methylene chloride 33.6 L ug/kg dry 23.9 23.9 1 05/07/24 05/07/24 16:08 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05	4-Isopropyltoluene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Methylene chloride 33.6 L ug/kg dry 23.9 23.9 1 05/07/24 05/07/24 16:08 LL Naphthalene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Styrene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL I,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL I,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Ictrachloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Ictrichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL I,1,2-Trichloroethane ND ug/kg dry 6.0	Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Naphthalene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL n-Propylbenzene ND ug/kg dry 6.0 2.4	4-Methyl-2-pentanone	ND	ug/kg dry	11.9	11.9	1	05/07/24	05/07/24 16:08	LL
n-Propylbenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Styrene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2,2-Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1,2-Trichloroethane	Methylene chloride	33.6	L ug/kg dry	23.9	23.9	1	05/07/24	05/07/24 16:08	LL
Styrene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 16:08 LL	Naphthalene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,1,1,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Toluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	n-Propylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,1,2,2-Tetrachloroethane	Styrene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Tetrachloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Foluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	1,1,1,2-Tetrachloroethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Toluene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	1,1,2,2-Tetrachloroethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2,3-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	Tetrachloroethene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,2,4-Trichlorobenzene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	Toluene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,1,1-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL 1,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Frichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Frichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	1,2,3-Trichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
I,1,2-Trichloroethane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Frichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Frichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	1,2,4-Trichlorobenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Frichloroethene ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL Frichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	1,1,1-Trichloroethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Frichlorofluoromethane (Freon 11) ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	1,1,2-Trichloroethane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
	Trichloroethene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
,2,3-Trichloropropane ND ug/kg dry 6.0 2.4 1 05/07/24 05/07/24 16:08 LL	Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
	1,2,3-Trichloropropane	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL

Ratecka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Number: 47:18315-A Project Manager: Nick Stella

Project: Saddle Creek

1-05

4050228-08 (Soil) Sampled on: 05/02/24 11:00

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Vinyl chloride	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
o-Xylene	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
m- & p-Xylenes	ND	ug/kg dry	6.0	2.4	1	05/07/24	05/07/24 16:08	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	98 %	05/07/24		05/07/24 16:08		
Surrogate: Toluene-d8		75-120	100 %	05/07/24		05/07/24 16:08		
Surrogate: 4-Bromofluorobenzene		65-120	96 %	05/07/24		05/07/24 16:08		
GASOLINE RANGE ORGANICS	BY EPA 5	5030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/08/24	05/08/24 14:14	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	101 %	05/08/24		05/08/24 14:14		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Soxl	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.5	9.5	1	05/03/24	05/06/24 16:12	TS
Surrogate: o-Terphenyl		70-130	85 %	05/03/24		05/06/24 16:12		
PERCENT SOLIDS BY ASTM D2	2216-05 Pr	epared by Percent S	olids					
Percent Solids	84	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-06

4050228-09 (Soil) Sampled on: 05/02/24 10:45

Analyte Result Notes Units	Limit (MRL)					
	LIIIII (MKL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
olatile Organics by EPA 8260B (GC/MS) Prepared by 5030-0	GCMS					
cetone ND ug/kg dry	12.4	12.4	1	05/07/24	05/07/24 16:36	LL
rt-Amyl alcohol (TAA) ND ug/kg dry	62.0	62.0	1	05/07/24	05/07/24 16:36	LL
rt-Amyl methyl ether (TAME) ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
enzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
romobenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
romochloromethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
romodichloromethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
romoform ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
romomethane ND ug/kg dry	6.2	6.2	1	05/07/24	05/07/24 16:36	LL
rt-Butanol (TBA) ND ug/kg dry	62.0	62.0	1	05/07/24	05/07/24 16:36	LL
Butanone (MEK) ND ug/kg dry	12.4	12.4	1	05/07/24	05/07/24 16:36	LL
Butylbenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
c-Butylbenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
rt-Butylbenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
arbon disulfide ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
arbon tetrachloride ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
hlorobenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
hloroethane ND ug/kg dry	6.2	6.2	1	05/07/24	05/07/24 16:36	LL
hloroform ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
hloromethane ND ug/kg dry	6.2	6.2	1	05/07/24	05/07/24 16:36	LL
Chlorotoluene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Chlorotoluene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
2-Dibromo-3-chloropropane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
ibromochloromethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
2-Dibromoethane (EDB) ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
ibromomethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
2-Dichlorobenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
3-Dichlorobenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
4-Dichlorobenzene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
ichlorodifluoromethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1-Dichloroethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
2-Dichloroethane ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1-Dichloroethene ND ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-06

4050228-09 (Soil) Sampled on: 05/02/24 10:45

		Sa	mpled on: 05/02	2/24 10:45				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	MS (continued)				
cis-1,2-Dichloroethene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
trans-1,2-Dichloroethene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Dichlorofluoromethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,2-Dichloropropane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,3-Dichloropropane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
2,2-Dichloropropane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,1-Dichloropropene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
cis-1,3-Dichloropropene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
trans-1,3-Dichloropropene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Diisopropyl ether (DIPE)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Ethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Hexachlorobutadiene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
2-Hexanone	ND	ug/kg dry	12.4	12.4	1	05/07/24	05/07/24 16:36	LL
Isopropylbenzene (Cumene)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
4-Isopropyltoluene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
4-Methyl-2-pentanone	ND	ug/kg dry	12.4	12.4	1	05/07/24	05/07/24 16:36	LL
Methylene chloride	33.1	L ug/kg dry	24.8	24.8	1	05/07/24	05/07/24 16:36	LL
Naphthalene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
n-Propylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Styrene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,1,1,2-Tetrachloroethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,1,2,2-Tetrachloroethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Tetrachloroethene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Toluene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,2,3-Trichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,2,4-Trichlorobenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,1,1-Trichloroethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,1,2-Trichloroethane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Trichloroethene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
1,2,3-Trichloropropane	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-06

4050228-09 (Soil) Sampled on: 05/02/24 10:45

Volatile Organics by EPA 8260B (GC/MS) Prepared by 5030-GCMS (continued) 1,2,4-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 1,3,5-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 Vinyl chloride ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 o-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 m- & p-Xylenes ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 05/07/24 16:36 Surrogate: Toluene-d8 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC 101 % 05/07/24 05/07/24 16:36									
Volatile Organics by EPA 8260B (GC/MS) Prepared by 5030-GCMS (continued) 1,2,4-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 1,3,5-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 1,3,5-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 1,3,5-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 0-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 0-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 0-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 0-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 0-Xylene ND ug/kg dry 0.5/07/24 05/07/24 05/07/24 16:36 0-Xylene ND 05/07/24 05/07/24 05/07/24 16:36 0-Xylene			Reporting	Detection					
1,2,4-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 1,3,5-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 Vinyl chloride ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 o-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 o-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 m- & p-Xylenes ND ug/kg dry 6.2 2.5 1 05/07/24 16:36 Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 05/07/24 16:36 Surrogate: 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
1,3,5-Trimethylbenzene ND ug/kg dry 6.2 2.5 1 05/07/24 16:36 Vinyl chloride ND ug/kg dry 6.2 2.5 1 05/07/24 16:36 o-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 m- & p-Xylenes ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 16:36 Surrogate: 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Volatile Organics by EPA 8260B (GC/MS) Pi	repared by 5030-GC	CMS (continued)				
Vinyl chloride ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 o-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 m- & p-Xylenes ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 05/07/24 16:36 Surrogate: Toluene-d8 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 16:36 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/	1,2,4-Trimethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
o-Xylene ND ug/kg dry 6.2 2.5 1 05/07/24 05/07/24 16:36 m- & p-Xylenes ND ug/kg dry 6.2 2.5 1 05/07/24 16:36 Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 16:36 Surrogate: Toluene-d8 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 05/07/24 16:36	1,3,5-Trimethylbenzene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
m- & p-Xylenes ND ug/kg dry 6.2 2.5 1 05/07/24 16:36 Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 16:36 Surrogate: Toluene-d8 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 05/08/24 14:42 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Vinyl chloride	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Surrogate: 1,2-Dichloroethane-d4 70-130 98 % 05/07/24 05/07/24 16:36 Surrogate: Toluene-d8 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 05/08/24 05/08/24 14:42 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	o-Xylene	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Surrogate: Toluene-d8 75-120 99 % 05/07/24 05/07/24 16:36 Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 1 05/08/24 05/08/24 14:42 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	m- & p-Xylenes	ND	ug/kg dry	6.2	2.5	1	05/07/24	05/07/24 16:36	LL
Surrogate: 4-Bromofluorobenzene 65-120 101 % 05/07/24 05/07/24 16:36 GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 1 05/08/24 05/08/24 14:42 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Surrogate: 1,2-Dichloroethane-d4		70-130	98 %	05/07/24		05/07/24 16:36		
GASOLINE RANGE ORGANICS BY EPA 5030/8015C Prepared by 5030-GC Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 05/08/24 14:42 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Surrogate: Toluene-d8		75-120	99 %	05/07/24		05/07/24 16:36		
Gasoline-Range Organics ND mg/kg dry 0.12 0.12 1 05/08/24 05/08/24 14:42 Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Surrogate: 4-Bromofluorobenzene		65-120	101 %	05/07/24		05/07/24 16:36		
Surrogate: a,a,a-Trifluorotoluene [FID] 85-115 102 % 05/08/24 05/08/24 14:42 DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	GASOLINE RANGE ORGANICS	S BY EPA	5030/8015C Prepare	ed by 5030-GC					
DIESEL RANGE ORGANICS BY EPA 3540/8015C Prepared by 3540-GC(Soxhlet) Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/08/24	05/08/24 14:42	MNB
Diesel-Range Organics (C10-C28) ND mg/kg dry 9.9 9.9 1 05/03/24 05/06/24 16:41 Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	102 %	05/08/24		05/08/24 14:42		
Surrogate: o-Terphenyl 70-130 101 % 05/03/24 05/06/24 16:41 PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Soxl	hlet)				
PERCENT SOLIDS BY ASTM D2216-05 Prepared by Percent Solids	Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.9	9.9	1	05/03/24	05/06/24 16:41	TS
• •	Surrogate: o-Terphenyl		70-130	101 %	05/03/24		05/06/24 16:41		
Percent Solids 81 % 1 05/02/24 05/03/24 08:25	PERCENT SOLIDS BY ASTM D	2216-05 Pr	epared by Percent S	Solids					
	Percent Solids	81	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-08

4050228-10 (Soil) Sampled on: 05/02/24 11:15

4 1	D 1/ 37	TT '	Reporting	Detection	D'L e'	D 1		A 1 :
Analyte		otes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B								
Acetone	ND	ug/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:03	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	61.3	61.3	1	05/07/24	05/07/24 17:03	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Benzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Bromobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Bromochloromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Bromodichloromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Bromoform	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Bromomethane	ND	ug/kg dry	6.1	6.1	1	05/07/24	05/07/24 17:03	LL
tert-Butanol (TBA)	ND	ug/kg dry	61.3	61.3	1	05/07/24	05/07/24 17:03	LL
2-Butanone (MEK)	ND	ug/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:03	LL
n-Butylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
sec-Butylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
tert-Butylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Carbon disulfide	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Carbon tetrachloride	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Chlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Chloroethane	ND	ug/kg dry	6.1	6.1	1	05/07/24	05/07/24 17:03	LL
Chloroform	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Chloromethane	ND	ug/kg dry	6.1	6.1	1	05/07/24	05/07/24 17:03	LL
2-Chlorotoluene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
4-Chlorotoluene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Dibromochloromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Dibromomethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2-Dichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,3-Dichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,4-Dichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Dichlorodifluoromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,1-Dichloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2-Dichloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,1-Dichloroethene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL

lakecka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enelao:

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-08

4050228-10 (Soil) Sampled on: 05/02/24 11:15

Properties ND					Reporting	Detection				
Size 1,2-Dichlorocthene ND	Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Parasilon Para	Volatile Organics by EPA 8260B (GC/MS) Pr	epared by 5	5030-GC	MS (continued)					
Dichlorofluoromethane ND	cis-1,2-Dichloroethene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2-Dichloropropane	trans-1,2-Dichloroethene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1.1. 1.2. 1.2. 1.2. 1.3. 1.3. 1.4.	Dichlorofluoromethane	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
2,2-Dichloropropane	1,2-Dichloropropane	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Langer L	1,3-Dichloropropane	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Light Ligh	2,2-Dichloropropane	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Trans-1,3-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Dickspropyl ether (DIPE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/	1,1-Dichloropropene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Disopropyl ether (DIPE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethyl	cis-1,3-Dichloropropene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24	trans-1,3-Dichloropropene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1	Diisopropyl ether (DIPE)	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 2-Hexanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Isopropylbenzene (ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Isopropylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methylene chloride 35.3 L ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL 5-1 05/07/24 05/07/24 17:03 LL 5-	Ethyl tert-butyl ether (ETBE)	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
2-Hexanone ND	Ethylbenzene	ND	u	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Sepropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Hexachlorobutadiene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
4-Isopropyltoluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Hoethyl-2-pentanone ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methylee chloride 35.3 L ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1-p-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	2-Hexanone	ND	u	g/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:03	LL
Methyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methylene chloride 35.3 L ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 05/07/	Isopropylbenzene (Cumene)	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:03 LL Methylene chloride 35.3 L ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/	4-Isopropyltoluene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Methylene chloride 35.3 L ug/kg dry 24.5 24.5 1 05/07/24 05/07/24 17:03 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.	Methyl tert-butyl ether (MTBE)	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	4-Methyl-2-pentanone	ND	u	g/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:03	LL
n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Methylene chloride	35.3	L ug	g/kg dry	24.5	24.5	1	05/07/24	05/07/24 17:03	LL
ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Naphthalene	ND	u	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	n-Propylbenzene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Styrene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	1,1,1,2-Tetrachloroethane	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	1,1,2,2-Tetrachloroethane	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Tetrachloroethene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Toluene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	1,2,3-Trichlorobenzene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	1,2,4-Trichlorobenzene	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	1,1,1-Trichloroethane	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	1,1,2-Trichloroethane	ND	uį	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
	Trichloroethene	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,2,3-Trichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:03 LL	Trichlorofluoromethane (Freon 11)	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
	1,2,3-Trichloropropane	ND	uş	g/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL

cka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

1-08

4050228-10 (Soil) Sampled on: 05/02/24 11:15

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Vinyl chloride	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
o-Xylene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
m- & p-Xylenes	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:03	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	96 %	05/07/24		05/07/24 17:03		
Surrogate: Toluene-d8		75-120	97 %	05/07/24		05/07/24 17:03		
Surrogate: 4-Bromofluorobenzene		65-120	99 %	05/07/24		05/07/24 17:03		
GASOLINE RANGE ORGANICS	BY EPA 5	5030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/08/24	05/08/24 15:10	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	103 %	05/08/24		05/08/24 15:10		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Soxl	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.8	9.8	1	05/03/24	05/06/24 17:10	TS
Surrogate: o-Terphenyl		70-130	95 %	05/03/24		05/06/24 17:10		
PERCENT SOLIDS BY ASTM D2	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	82	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-09

4050228-11 (Soil) Sampled on: 05/02/24 11:45

		Sa	mpled on: 05/02	2/24 11:45				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared by 5030-GC	EMS					
Acetone	ND	ug/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:31	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	61.5	61.5	1	05/07/24	05/07/24 17:31	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Benzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Bromobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Bromochloromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Bromodichloromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Bromoform	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Bromomethane	ND	ug/kg dry	6.1	6.1	1	05/07/24	05/07/24 17:31	LL
tert-Butanol (TBA)	ND	ug/kg dry	61.5	61.5	1	05/07/24	05/07/24 17:31	LL
2-Butanone (MEK)	ND	ug/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:31	LL
n-Butylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
sec-Butylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
tert-Butylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Carbon disulfide	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Carbon tetrachloride	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Chlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Chloroethane	ND	ug/kg dry	6.1	6.1	1	05/07/24	05/07/24 17:31	LL
Chloroform	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Chloromethane	ND	ug/kg dry	6.1	6.1	1	05/07/24	05/07/24 17:31	LL
2-Chlorotoluene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
4-Chlorotoluene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Dibromochloromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Dibromomethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2-Dichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,3-Dichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,4-Dichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Dichlorodifluoromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,1-Dichloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2-Dichloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,1-Dichloroethene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL

lakecha Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Manager: Nick Stella

1-09 4050228-11 (Soil) Sampled on: 05/02/24 11:45

Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 2-Hexanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methyl etr-bulg ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methylene chloride ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL NBaphthalene ND ug/kg dry 6.1				Reporting	Detection				
ciss_1,2-Dichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL trans=1,2-Dichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Dichloroflororomethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2-Dichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 2,2-Dichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL cis-1,3-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Utams-1,3-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Utams-1,3-Dichloropropene ND ug	Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
trans-1,2-Dichloroethene ND ug/kg dry 6.1 2.5 1 0507/24 05/07/24 17:31 LL Dichloroflouromethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2-Dichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,3-Dichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1-Dichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL L1,1-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL L1,1-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31	Volatile Organics by EPA 8260B (C	GC/MS) Pre	epared by 5030-G	CMS (continued)				
Dichlorofiloromethane ND	cis-1,2-Dichloroethene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2-Dichloropropane	trans-1,2-Dichloroethene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,3-Dichloropropane	Dichlorofluoromethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
2,2-Dichloropropane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL 1,1-Dichloropropene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL cis-1,3-Dichloropropene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Dichloropropene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Dishopropple ther (DIPE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Dishopropple ther (DIPE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethylkenzene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethylkenzene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethylkenzene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Stopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Methylene chloride 34.6 L ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride 34.6 L ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride 34.6 L ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Nethylene chloride ND ug/k	1,2-Dichloropropane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
I,I-Dichloropropene	1,3-Dichloropropane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
cis-1,3-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL trans-1,3-Dichloropropene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:31 LL Diisopropple ther (DIPE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:31 LL Ethyl terr-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethyl terr-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 2-Hexannoe ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 <t< td=""><td>2,2-Dichloropropane</td><td>ND</td><td>ug/kg dry</td><td>6.1</td><td>2.5</td><td>1</td><td>05/07/24</td><td>05/07/24 17:31</td><td>LL</td></t<>	2,2-Dichloropropane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
trans-13-Dichloropropene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Diisopropyl ether (DIPE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethylkenzene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethylkenzene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Ethylkenzene ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Sepropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Sepropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choride ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/kg dry 6.1 2.5 1 0507/24 0507/24 17:31 LL Hethylter-choroethane ND ug/k	1,1-Dichloropropene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Diisopropyl ether (DIPE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Seyropyl benzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Seyropyl benzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methylene chloride 34.6 L ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/	cis-1,3-Dichloropropene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Ethyl tert-butyl ether (ETBE) ND ug/sg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 2-Hexanone ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methyler-buryle ether (MTBE) 34.6 L<	trans-1,3-Dichloropropene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Ethylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Sopropylbenzene (Cumene) ND ug/kg dry 6.1 2.3 12.3 1 05/07/24 05/07/24 17:31 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Hexachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug/kg dry 12.3 1 05/07/24 05/07/24 17:31 LL Tetrachlorobutadiene ND ug	Diisopropyl ether (DIPE)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Hexachlorobutadiene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 2-Hexanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Methylene chloride 34.6 L ug/kg dry 24.6 24.6 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6	Ethyl tert-butyl ether (ETBE)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
2-Hexanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Isopropylbenzene (Cumene) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene (ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Isopropylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL 4-Methyl-2-pentanone ND ug/kg dry 24.6 24.6 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/	Ethylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Suppossible	Hexachlorobutadiene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
A-Isopropyltoluene	2-Hexanone	ND	ug/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:31	LL
Methyl tert-butyl ether (MTBE) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Methylene chloride 34.6 L ug/kg dry 24.6 24.6 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene	Isopropylbenzene (Cumene)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
4-Methyl-2-pentanone ND ug/kg dry 12.3 12.3 1 05/07/24 05/07/24 17:31 LL Methylene chloride 34.6 L ug/kg dry 24.6 24.6 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/	4-Isopropyltoluene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Methylene chloride 34.6 L ug/kg dry 24.6 24.6 1 05/07/24 05/07/24 17:31 LL Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene<	Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Naphthalene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane (Freon 11)	4-Methyl-2-pentanone	ND	ug/kg dry	12.3	12.3	1	05/07/24	05/07/24 17:31	LL
n-Propylbenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1	Methylene chloride	34.6	L ug/kg dry	24.6	24.6	1	05/07/24	05/07/24 17:31	LL
Styrene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1	Naphthalene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,1,1,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	n-Propylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,1,2,2-Tetrachloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL <td>Styrene</td> <td>ND</td> <td>ug/kg dry</td> <td>6.1</td> <td>2.5</td> <td>1</td> <td>05/07/24</td> <td>05/07/24 17:31</td> <td>LL</td>	Styrene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Tetrachloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	1,1,1,2-Tetrachloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Toluene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	1,1,2,2-Tetrachloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2,3-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	Tetrachloroethene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2,4-Trichlorobenzene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	Toluene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,1,1-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL 1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	1,2,3-Trichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,1,2-Trichloroethane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	1,2,4-Trichlorobenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Trichloroethene ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	1,1,1-Trichloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Trichlorofluoromethane (Freon 11) ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	1,1,2-Trichloroethane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
	Trichloroethene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,2,3-Trichloropropane ND ug/kg dry 6.1 2.5 1 05/07/24 05/07/24 17:31 LL	Trichlorofluoromethane (Freon 11)	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
	1,2,3-Trichloropropane	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

enela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

1-09

4050228-11 (Soil) Sampled on: 05/02/24 11:45

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pr	epared by 5030-GC	MS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Vinyl chloride	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
o-Xylene	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
m- & p-Xylenes	ND	ug/kg dry	6.1	2.5	1	05/07/24	05/07/24 17:31	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	94 %	05/07/24		05/07/24 17:31		
Surrogate: Toluene-d8		75-120	98 %	05/07/24		05/07/24 17:31		
Surrogate: 4-Bromofluorobenzene		65-120	99 %	05/07/24		05/07/24 17:31		
GASOLINE RANGE ORGANICS	S BY EPA 5	5030/8015C Prepare	d by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.12	0.12	1	05/08/24	05/08/24 15:37	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	103 %	05/08/24		05/08/24 15:37		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Soxl	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	9.8	9.8	1	05/03/24	05/06/24 17:40	TS
Surrogate: o-Terphenyl		70-130	94 %	05/03/24		05/06/24 17:40		
PERCENT SOLIDS BY ASTM D2	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	81	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-10 4050228-12 (Soil)

Sampled on: 05/02/24 11:30

	D 1:	37.4	Reporting	Detection	Dil et	D 1		
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B								
Acetone	ND	ug/kg dry	10.9	10.9	1	05/07/24	05/07/24 17:58	LL
tert-Amyl alcohol (TAA)	ND	ug/kg dry	54.5	54.5	1	05/07/24	05/07/24 17:58	LL
tert-Amyl methyl ether (TAME)	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Benzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Bromobenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Bromochloromethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Bromodichloromethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Bromoform	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Bromomethane	ND	ug/kg dry	5.5	5.5	1	05/07/24	05/07/24 17:58	LL
tert-Butanol (TBA)	ND	ug/kg dry	54.5	54.5	1	05/07/24	05/07/24 17:58	LL
2-Butanone (MEK)	ND	ug/kg dry	10.9	10.9	1	05/07/24	05/07/24 17:58	LL
n-Butylbenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
sec-Butylbenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
tert-Butylbenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Carbon disulfide	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Carbon tetrachloride	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Chlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Chloroethane	ND	ug/kg dry	5.5	5.5	1	05/07/24	05/07/24 17:58	LL
Chloroform	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Chloromethane	ND	ug/kg dry	5.5	5.5	1	05/07/24	05/07/24 17:58	LL
2-Chlorotoluene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
4-Chlorotoluene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2-Dibromo-3-chloropropane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Dibromochloromethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2-Dibromoethane (EDB)	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Dibromomethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2-Dichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,3-Dichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,4-Dichlorobenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Dichlorodifluoromethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1-Dichloroethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2-Dichloroethane	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1-Dichloroethene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kakecka Korns

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

1-10 4050228-12 (Soil)

Sampled on: 05/02/24 11:30

trans-1,2-Dichloroethene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL Dichlorofitoromethane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,2-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropane ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloropropene ND ugkg d					Reporting	Detection				
cis-1,2-Dichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Lt trans-1,2-Dichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Dichloroptropane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,3-Dichloroptropane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,3-Dichloroptropane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1-Dichloroptropane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL cis-1,3-Dichloroptropane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Licis-1,3-Dichloroptropane ND ug/kg dry 5.5 2.2 1 05/07/24 <t< th=""><th>Analyte</th><th>Result</th><th>Notes</th><th>Units</th><th>Limit (MRL)</th><th>Limit (LOD)</th><th>Dilution</th><th>Prepared</th><th>Analyzed</th><th>Analyst</th></t<>	Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
trans-1,2-Dichloroethene ND wgkg dry 5.5 2.2 1 0507/24 17:58 LL Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 17:58 LL 1,2-Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,2-Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,2-Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropane ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene ND wgkg dry 5.5 2.2 1 0507/24 0507/24 17:58 LL 1,1-Dichloroptropene N	Volatile Organics by EPA 8260B (GC/MS) Pr	epared by	5030-GC	MS (continued)					
Dichlorofiloromethane	cis-1,2-Dichloroethene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2-Dichloropropane	trans-1,2-Dichloroethene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,3-Dichloropropane	Dichlorofluoromethane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
2,2-Dichloropropane	1,2-Dichloropropane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1-Dichloropropene	1,3-Dichloropropane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
cis-1,3-Dichloropropene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL trans-1,3-Dichloropropene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Diisopropyl ether (DIPE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Hexachlorobutadiene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 2-Hexanne ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 2-Hexanne ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 <t< td=""><td>2,2-Dichloropropane</td><td>ND</td><td>ι</td><td>ug/kg dry</td><td>5.5</td><td>2.2</td><td>1</td><td>05/07/24</td><td>05/07/24 17:58</td><td>LL</td></t<>	2,2-Dichloropropane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
trans-1,3-Dichloropropene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Diisopropyl ether (DIPE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethyl Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (MEthylbene (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene (MEthylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Chloride ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Chloridene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Chloridene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbene Ethylbene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58	1,1-Dichloropropene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Diisopropyl ether (DIPE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethyl tert-butyl ether (ETBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL LE LL LE LE LE LE LE LE L	cis-1,3-Dichloropropene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Ethyl tert-butyl ether (ETBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Ethylbenzene ND ug/kg dry 10.9 10.9 1 05/07/24 17:58 LL Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Isopro	trans-1,3-Dichloropropene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Ethylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Hexachlorobutadiene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Stopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Stopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphth	Diisopropyl ether (DIPE)	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Hexachlorobutadiene ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL 2-Hexanone ND ug/kg dry 10.9 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 4-Methyl-2-pentanone ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methylene chloride 26.0 L ug/kg dry 21.8 21.8 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL L 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 05/07/24 17:58 LL L 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24	Ethyl tert-butyl ether (ETBE)	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
2-Hexanone ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 4-Isopropylbenzene (Cumene) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl-2-pentanone ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methyle-2-pentanone ND ug/kg dry 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17	Ethylbenzene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Suppropylbenzene (Cumene) ND	Hexachlorobutadiene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
4-Isopropyltoluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 4-Methyl-2-pentanone ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methylene chloride 26.0 L ug/kg dry 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene	2-Hexanone	ND	ι	ug/kg dry	10.9	10.9	1	05/07/24	05/07/24 17:58	LL
Methyl tert-butyl ether (MTBE) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 4-Methyl-2-pentanone ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Methylene chloride 26.0 L ug/kg dry 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL n-Propylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5	Isopropylbenzene (Cumene)	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
4-Methyl-2-pentanone ND ug/kg dry 10.9 10.9 1 05/07/24 05/07/24 17:58 LL Naphthalene chloride 26.0 L ug/kg dry 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	4-Isopropyltoluene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Methylene chloride 26.0 L ug/kg dry 21.8 21.8 1 05/07/24 05/07/24 17:58 LL Naphthalene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL n-Propylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 <t< td=""><td>Methyl tert-butyl ether (MTBE)</td><td>ND</td><td>ι</td><td>ug/kg dry</td><td>5.5</td><td>2.2</td><td>1</td><td>05/07/24</td><td>05/07/24 17:58</td><td>LL</td></t<>	Methyl tert-butyl ether (MTBE)	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Naphthalene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL LL 1,1,1,2-Tetrachloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL LL 1,1,2,2-Tetrachloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL LL 1,1,2,2-Tetrachloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Totluene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry S.5 2.2 1 05/07/24 05/07/24 17:58 LL	4-Methyl-2-pentanone	ND	ι	ug/kg dry	10.9	10.9	1	05/07/24	05/07/24 17:58	LL
n-Propylbenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Styrene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	Methylene chloride	26.0	Lι	ug/kg dry	21.8	21.8	1	05/07/24	05/07/24 17:58	LL
ND	Naphthalene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1,1,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	n-Propylbenzene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1,2,2-Tetrachloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL <td>Styrene</td> <td>ND</td> <td>ι</td> <td>ug/kg dry</td> <td>5.5</td> <td>2.2</td> <td>1</td> <td>05/07/24</td> <td>05/07/24 17:58</td> <td>LL</td>	Styrene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Tetrachloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	1,1,1,2-Tetrachloroethane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Toluene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	1,1,2,2-Tetrachloroethane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2,3-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,2,4-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	Tetrachloroethene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2,4-Trichlorobenzene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	Toluene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1,1-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL 1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	1,2,3-Trichlorobenzene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,1,2-Trichloroethane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	1,2,4-Trichlorobenzene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Trichloroethene ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	1,1,1-Trichloroethane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Trichlorofluoromethane (Freon 11) ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	1,1,2-Trichloroethane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
	Trichloroethene	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,2,3-Trichloropropane ND ug/kg dry 5.5 2.2 1 05/07/24 05/07/24 17:58 LL	Trichlorofluoromethane (Freon 11)	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
	1,2,3-Trichloropropane	ND	ι	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL

Rakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

4050228-12 (Soil) Sampled on: 05/02/24 11:30

1-10

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pı	repared by 5030-GC	CMS (continued)				
1,2,4-Trimethylbenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
1,3,5-Trimethylbenzene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Vinyl chloride	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
o-Xylene	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
m- & p-Xylenes	ND	ug/kg dry	5.5	2.2	1	05/07/24	05/07/24 17:58	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	96 %	05/07/24		05/07/24 17:58		
Surrogate: Toluene-d8		75-120	99 %	05/07/24		05/07/24 17:58		
Surrogate: 4-Bromofluorobenzene		65-120	99 %	05/07/24		05/07/24 17:58		
GASOLINE RANGE ORGANICS	S BY EPA 5	5030/8015C Prepare	ed by 5030-GC					
Gasoline-Range Organics	ND	mg/kg dry	0.11	0.11	1	05/08/24	05/08/24 16:05	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	103 %	05/08/24		05/08/24 16:05		
DIESEL RANGE ORGANICS BY	EPA 3540	/8015C Prepared by	y 3540-GC(Soxl	hlet)				
Diesel-Range Organics (C10-C28)	ND	mg/kg dry	8.7	8.7	1	05/03/24	05/06/24 18:09	TS
Surrogate: o-Terphenyl		70-130	109 %	05/03/24		05/06/24 18:09		
PERCENT SOLIDS BY ASTM D	2216-05 Pr	epared by Percent S	Solids					
Percent Solids	92	%			1	05/02/24	05/03/24 08:25	RS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela de la proposición dela proposición de la proposición dela proposición de la proposición de la proposición de la pro

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-01

4050228-13 (Nonpotable Water) Sampled on: 05/02/24 12:10

		S	ampled on: 05/02	2/24 12:10				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pr	repared by GCMS	-WATER-VOLA	TILES				
Acetone	114	ug/L	10.0	10.0	1	05/06/24	05/06/24 19:18	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	05/06/24	05/06/24 19:18	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Benzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Bromoform	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Bromomethane	ND	ug/L	5.0	5.0	1	05/06/24	05/06/24 19:18	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	05/06/24	05/06/24 19:18	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 19:18	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Chloroethane	ND	ug/L	5.0	3.0	1	05/06/24	05/06/24 19:18	LL
Chloroform	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Chloromethane	ND	ug/L	5.0	5.0	1	05/06/24	05/06/24 19:18	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2-Dichloroethane								
	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-01

4050228-13 (Nonpotable Water) Sampled on: 05/02/24 12:10

		S	ampled on: 05/02	2/24 12:10				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pı	repared by GCMS-	WATER-VOLA	TILES (continu	ed)			
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 19:18	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 19:18	LL
Methylene chloride	ND	ug/L	10.0	5.0	1	05/06/24	05/06/24 19:18	LL
Naphthalene	ND	ug/L	2.0	2.0	1	05/06/24	05/06/24 19:18	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Styrene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Toluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:18	LL

sons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

nelac :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

GW1-01

4050228-13 (Nonpotable Water) Sampled on: 05/02/24 12:10

			Reporting	Detection				
Analyte	Result	Notes Uni	ts Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GO	C/MS) Pr	epared by GC	MS-WATER-VOI	ATILES (continu	ed)			
1,2,4-Trimethylbenzene	ND	ug/	L 2.0	1.0	1	05/06/24	05/06/24 19:18	LL
1,3,5-Trimethylbenzene	ND	ug/	L 2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Vinyl chloride	ND	ug/	L 2.0	1.0	1	05/06/24	05/06/24 19:18	LL
o-Xylene	ND	ug/	L 2.0	1.0	1	05/06/24	05/06/24 19:18	LL
m- & p-Xylenes	ND	ug/	L 2.0	1.0	1	05/06/24	05/06/24 19:18	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	93 %	05/06/	24	05/06/24 19:18		
Surrogate: Toluene-d8		75-120	94 %	05/06/	24	05/06/24 19:18		
Surrogate: 4-Bromofluorobenzene		75-120	95 %	05/06/	24	05/06/24 19:18		
GASOLINE RANGE ORGANICS I	BY EPA 8	015C Prepare	d by GC-WATER	-VOLATILES				
Gasoline-Range Organics	ND	ug/	L 100	45.0	1	05/06/24	05/06/24 17:11	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-115	107 %	05/06/	24	05/06/24 17:11		
DIESEL RANGE ORGANICS BY E	EPA 3510	/8015C Prepa r	ed by 3510-GC(Se	ep Funnel)				MX-01
Diesel-Range Organics (C10-C28)	ND	mg	/L 0.23	0.23	1	05/06/24	05/07/24 21:34	TS
Surrogate: o-Terphenyl		60-120	88 %	05/06/	24	05/07/24 21:34		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-03

4050228-14 (Nonpotable Water) Sampled on: 05/02/24 12:30

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared b	y GCMS-	WATER-VOLA	ΓILES				
Acetone	17.3		ug/L	10.0	10.0	1	05/06/24	05/06/24 19:43	LL
tert-Amyl alcohol (TAA)	ND		ug/L	20.0	20.0	1	05/06/24	05/06/24 19:43	LL
tert-Amyl methyl ether (TAME)	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Benzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Bromobenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Bromochloromethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Bromodichloromethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Bromoform	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Bromomethane	ND		ug/L	5.0	5.0	1	05/06/24	05/06/24 19:43	LL
tert-Butanol (TBA)	ND		ug/L	15.0	15.0	1	05/06/24	05/06/24 19:43	LL
2-Butanone (MEK)	ND		ug/L	10.0	10.0	1	05/06/24	05/06/24 19:43	LL
n-Butylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
sec-Butylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
tert-Butylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Carbon disulfide	1.3	J	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Carbon tetrachloride	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Chlorobenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Chloroethane	ND		ug/L	5.0	3.0	1	05/06/24	05/06/24 19:43	LL
Chloroform	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Chloromethane	ND		ug/L	5.0	5.0	1	05/06/24	05/06/24 19:43	LL
2-Chlorotoluene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
4-Chlorotoluene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Dibromochloromethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2-Dibromo-3-chloropropane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2-Dibromoethane (EDB)	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Dibromomethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2-Dichlorobenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,3-Dichlorobenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,4-Dichlorobenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Dichlorodifluoromethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1-Dichloroethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2-Dichloroethane	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1-Dichloroethene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL

Jacka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-03

4050228-14 (Nonpotable Water) Sampled on: 05/02/24 12:30

		Sa	impled on: 05/02	2/24 12:30				
			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Prepared l	oy GCMS-	WATER-VOLA	FILES (continu	ed)			
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 19:43	LL
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 19:43	LL
Methylene chloride	ND	ug/L	10.0	5.0	1	05/06/24	05/06/24 19:43	LL
Naphthalene	ND	ug/L	2.0	2.0	1	05/06/24	05/06/24 19:43	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Styrene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Toluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL

Ratecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

nela (

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

GW1-03

4050228-14 (Nonpotable Water) Sampled on: 05/02/24 12:30

				Reporting	Detection			-	
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC	C/MS) Pr	epared by	GCMS	S-WATER-VOLATII	LES (continued	l)			
1,2,4-Trimethylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
1,3,5-Trimethylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Vinyl chloride	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
o-Xylene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
m- & p-Xylenes	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 19:43	LL
Surrogate: 1,2-Dichloroethane-d4		70-	130	93 %	05/06/24		05/06/24 19:43		
Surrogate: Toluene-d8		75-	120	95 %	05/06/24		05/06/24 19:43		
Surrogate: 4-Bromofluorobenzene		75-	120	93 %	05/06/24		05/06/24 19:43		
GASOLINE RANGE ORGANICS E	Y EPA 8	8015C Prep	oared b	y GC-WATER-VOL	ATILES				
Gasoline-Range Organics	ND		ug/L	100	45.0	1	05/06/24	05/06/24 17:37	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		85-	-115	108 %	05/06/24		05/06/24 17:37		
DIESEL RANGE ORGANICS BY E	PA 3510	/8015C Pr	epared	by 3510-GC(Sep Fu	nnel)				MX-01
Diesel-Range Organics (C10-C28)	ND		mg/L	0.27	0.27	1	05/06/24	05/07/24 22:01	TS
Surrogate: o-Terphenyl		60-	120	87 %	05/06/24		05/07/24 22:01		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-08

4050228-15 (Nonpotable Water) Sampled on: 05/02/24 12:20

			Sampled of	on: 05/02	2/24 12:20				
			Repo	orting	Detection				
Analyte	Result	Notes Uni	s Limit	(MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pı	repared by GC	MS-WATER	-VOLA	ΓILES				
Acetone	32.9	ug/	L	10.0	10.0	1	05/06/24	05/06/24 20:08	LL
tert-Amyl alcohol (TAA)	ND	ug/	L	20.0	20.0	1	05/06/24	05/06/24 20:08	LL
tert-Amyl methyl ether (TAME)	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Benzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Bromobenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Bromochloromethane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Bromodichloromethane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Bromoform	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Bromomethane	ND	ug/	Ĺ	5.0	5.0	1	05/06/24	05/06/24 20:08	LL
tert-Butanol (TBA)	ND	ug/	L	15.0	15.0	1	05/06/24	05/06/24 20:08	LL
2-Butanone (MEK)	ND	ug/	L	10.0	10.0	1	05/06/24	05/06/24 20:08	LL
n-Butylbenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
sec-Butylbenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
tert-Butylbenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Carbon disulfide	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Carbon tetrachloride	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Chlorobenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Chloroethane	ND	ug/	L	5.0	3.0	1	05/06/24	05/06/24 20:08	LL
Chloroform	4.3	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Chloromethane	ND	ug/	L	5.0	5.0	1	05/06/24	05/06/24 20:08	LL
2-Chlorotoluene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
4-Chlorotoluene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Dibromochloromethane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2-Dibromo-3-chloropropane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2-Dibromoethane (EDB)	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Dibromomethane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2-Dichlorobenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,3-Dichlorobenzene	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,4-Dichlorobenzene	ND	ug/	Ĺ	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Dichlorodifluoromethane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1-Dichloroethane	ND	ug/	L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2-Dichloroethane	ND	ug/	Ĺ	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1-Dichloroethene	ND	ug/		2.0	1.0	1	05/06/24	05/06/24 20:08	LL

becka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nelac .

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-08

4050228-15 (Nonpotable Water) Sampled on: 05/02/24 12:20

		S	ampled on: 05/02	2/24 12:20				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pı	repared by GCMS-	WATER-VOLA	TILES (continu	ed)			
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 20:08	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 20:08	LL
Methylene chloride	ND	ug/L	10.0	5.0	1	05/06/24	05/06/24 20:08	LL
Naphthalene	ND	ug/L	2.0	2.0	1	05/06/24	05/06/24 20:08	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Styrene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Toluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL

Pakecka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

nela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

GW1-08

4050228-15 (Nonpotable Water) Sampled on: 05/02/24 12:20

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pr	epared by	y GCMS	-WATER-VOLAT	ILES (continued	l)			
1,2,4-Trimethylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
1,3,5-Trimethylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Vinyl chloride	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
o-Xylene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
m- & p-Xylenes	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:08	LL
Surrogate: 1,2-Dichloroethane-d4		70	0-130	97 %	05/06/24		05/06/24 20:08		
Surrogate: Toluene-d8		7.	5-120	94 %	05/06/24		05/06/24 20:08		
Surrogate: 4-Bromofluorobenzene		7.	5-120	95 %	05/06/24		05/06/24 20:08		
GASOLINE RANGE ORGANICS	S BY EPA 8	015C Pre	pared by	y GC-WATER-VO	LATILES				
Gasoline-Range Organics	ND		ug/L	100	45.0	1	05/06/24	05/06/24 18:03	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		8.	5-115	107 %	05/06/24		05/06/24 18:03		
DIESEL RANGE ORGANICS BY	EPA 3510	/8015C P	repared l	by 3510-GC(Sep Fi	unnel)				MX-01
Diesel-Range Organics (C10-C28)	ND		mg/L	0.24	0.24	1	05/06/24	05/07/24 22:28	TS
Surrogate: o-Terphenyl		60	0-120	90 %	05/06/24		05/07/24 22:28		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

4050228-16 (Nonpotable Water) Sampled on: 05/02/24 12:00

GW1-09

Analyte Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyte Volatile Organics by EPA 8260B (GC/MS) Prepared by GCMS-WATER-VOLATILES Acetone ND ug/L 10.0 10.0 1 05/06/24 05/06/2 tert-Amyl alcohol (TAA) ND ug/L 20.0 20.0 1 05/06/24 05/06/2 tert-Amyl methyl ether (TAME) ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL 4 20:33 LL 4 20:33 LL 4 20:33 LL
Acetone ND ug/L 10.0 10.0 1 05/06/24 05/06/24 tert-Amyl alcohol (TAA) ND ug/L 20.0 20.0 1 05/06/24 05/06/24 tert-Amyl methyl ether (TAME) ND ug/L 2.0 1.0 1 05/06/24 05/06/24	4 20:33 LL 4 20:33 LL 4 20:33 LL
tert-Amyl alcohol (TAA) ND ug/L 20.0 20.0 1 05/06/24 05/06/2 tert-Amyl methyl ether (TAME) ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL 4 20:33 LL 4 20:33 LL
tert-Amyl methyl ether (TAME) ND ug/L 2.0 1.0 1 $05/06/24$ $05/06/24$	4 20:33 LL 4 20:33 LL
· · · · · · · · · · · · · · · · · · ·	4 20:33 LL
Benzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	120.22
Bromobenzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Bromochloromethane ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Bromodichloromethane ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Bromoform ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Bromomethane ND ug/L 5.0 5.0 1 05/06/24 05/06/2	4 20:33 LL
tert-Butanol (TBA) ND ug/L 15.0 15.0 1 05/06/24 05/06/2	4 20:33 LL
2-Butanone (MEK) ND ug/L 10.0 10.0 1 05/06/24 05/06/2	4 20:33 LL
n-Butylbenzene ND ug/L 2.0 1.0 1 $05/06/24$ $05/06/24$	4 20:33 LL
sec-Butylbenzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
tert-Butylbenzene ND ug/L 2.0 1.0 1 $05/06/24$ $05/06/24$	4 20:33 LL
Carbon disulfide ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Carbon tetrachloride ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Chlorobenzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Chloroethane ND ug/L 5.0 3.0 1 05/06/24 05/06/2	4 20:33 LL
Chloroform ND ug/L 2.0 1.0 1 $05/06/24$ $05/06/2$	4 20:33 LL
Chloromethane ND ug/L 5.0 5.0 1 05/06/24 05/06/2	4 20:33 LL
2-Chlorotoluene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
4-Chlorotoluene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
$\label{eq:decomposition} Dibromochloromethane \qquad \qquad ND \qquad \qquad ug/L \qquad \qquad 2.0 \qquad \qquad 1.0 \qquad \qquad 1 \qquad \qquad 05/06/24 \qquad \qquad 05/06/24$	4 20:33 LL
1,2-Dibromo-3-chloropropane ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
1,2-Dibromoethane (EDB) ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Dibromomethane ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
1,2-Dichlorobenzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
1,3-Dichlorobenzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
1,4-Dichlorobenzene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
Dichlorodifluoromethane ND ug/L 2.0 1.0 1 $05/06/24$ $05/06/24$	4 20:33 LL
1,1-Dichloroethane ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
1,2-Dichloroethane ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL
1,1-Dichloroethene ND ug/L 2.0 1.0 1 05/06/24 05/06/2	4 20:33 LL

Pakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enela de

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

GW1-09

4050228-16 (Nonpotable Water) Sampled on: 05/02/24 12:00

		S	ampled on: 05/02	2/24 12:00				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pı	repared by GCMS-	WATER-VOLA	TILES (continu	ed)			
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 20:33	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	05/06/24	05/06/24 20:33	LL
Methylene chloride	ND	ug/L	10.0	5.0	1	05/06/24	05/06/24 20:33	LL
Naphthalene	ND	ug/L	2.0	2.0	1	05/06/24	05/06/24 20:33	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Styrene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Toluene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

enela C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle Creek

Project Number: 47:18315-A Project Manager: Nick Stella

GW1-09

4050228-16 (Nonpotable Water) Sampled on: 05/02/24 12:00

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC	C/MS) Pr	epared b	y GCMS	S-WATER-VOLATII	LES (continued	l)			
1,2,4-Trimethylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
1,3,5-Trimethylbenzene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Vinyl chloride	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
o-Xylene	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
m- & p-Xylenes	ND		ug/L	2.0	1.0	1	05/06/24	05/06/24 20:33	LL
Surrogate: 1,2-Dichloroethane-d4		7	0-130	97 %	05/06/24		05/06/24 20:33		
Surrogate: Toluene-d8		7	75-120	94 %	05/06/24		05/06/24 20:33		
Surrogate: 4-Bromofluorobenzene		7	75-120	96 %	05/06/24		05/06/24 20:33		
GASOLINE RANGE ORGANICS E	Y EPA 8	8015C Pr	epared b	y GC-WATER-VOL	ATILES				
Gasoline-Range Organics	ND		ug/L	100	45.0	1	05/06/24	05/06/24 18:28	MNB
Surrogate: a,a,a-Trifluorotoluene [FID]		8	35-115	107 %	05/06/24		05/06/24 18:28		
DIESEL RANGE ORGANICS BY E	PA 3510	/8015C P	repared	by 3510-GC(Sep Fu	nnel)				MX-01
Diesel-Range Organics (C10-C28)	ND		mg/L	0.26	0.26	1	05/06/24	05/07/24 22:56	TS
Surrogate: o-Terphenyl		6	0-120	90 %	05/06/24		05/07/24 22:56		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Chemistry Services

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project Number: 47:18315-A Project Manager: Nick Stella

Maryland Spectral Services does not maintain certification for the following analytical parameters:

Maryland Spectral Services	
Matrix, Method, Analyte	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kancha Koms

Analytical Chemistry Services

e nelao

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/09/24 13:59

Project: Saddle CreekProject Number: 47:18315-A
Project Manager: Nick Stella

Notes and Definitions

S-PCB	This QC sample was spiked for EPA 8081B only. EPA 8082A spike recovery was not evaluated.
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
QM-4X	The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
QM-06	Due to non-homogeneity of the QC sample matrix, the MS/MSD or MS/DUP did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS percent recoveries.
MX-01	Due to the presence of sediment in the sample, the container was not rinsed in accordance with EPA Method 3510 Section 7.4.
L	Analyte is a possible laboratory contaminant
J	Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).
RE	Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified with a sample qualifier.
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
%-Solids	Percent Solids is a supportive test and as such does not require accredidation

If this report contains any samples analyzed for gasoline range organics (GRO) by EPA Method 8015C and no trip blank was shipped, stored, and received with the sample(s) as required by Section 3.1 of the EPA Method, the sample analysis contained in this report cannot exclude the possibility that any reportable GRO measurement was due to environmental contamination of the sample during shipping or storage.

lakecka Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Company Name:		Project	Man	age	r:							Anal	ysis R	Requ	estec	1	 CHAIN-OF-CUSTODY RECORD			
ECS Baltimore		Nick S	tella	3							<u> </u>	1	<u> </u>							
Project Name: Saddle Creek		Project 183		-A				-				2	d					ryland Spec O Caton Cer Baltimore	iter Dri	ve, Suite G
Sampler(s):		P.O. Nu	mbe	r:	***************************************							0	719	is				247-7600 *	Fax 410-247-7602	
Nick Stella											1	/	- 2	10	5/0	0	r	eporting@n	ndspect	ral.com
State of Origin:			1							GX-70	280	2/5/	10m	8-	, 000	8	Matrix Codes:	NPW - non DW - drink		
Field Sample ID:	Date	Time	DW	NPW	Soil	Other	Grab	Composite	# of containers	8-8HHJ	PCB5-B	0	Hex Chi	TPH-DRD	TPH-GRO	10Cs - 8	Preservative	Field Not	es	MSS Lab ID
04-1A	5/2/24	1330			χ			λ	ス	X	X	1	X					:	405	0228-01 A
ou-1B		1335			Ų.			*		Х	X	x	Х						-	02
OU-IC		1340			χ			X		Х	٨	4	1							- 03
ou-1D		1345			χ			X.	7	X.	K	7	K.							- 64
1-01		0930			γ		Х		1					χ	Х	10				- 05
1-03		1030			χ		X							K	χ	X				- 06
1-04		1300			χ		Х	7.00						K	X	χ				- 07
1-05		1100			χ		ĵ							Ж	χ	×				- 08
1-06	\prod	1045			λ		у		\mathcal{T}					Q	X	×				- 09
1-08	/	1115			χ		Х		7					×	Ŋ	X				-10
Relinquished by: (Signature)		/Time	Relir	ıquisl	hed b	y: (Sig	gnatu	ire)			Pl	ease	indic	ate i	any	of	Virginia VELA	Р	□ MC	Drinking Water
Rid Steel	5/2/	24									the		wing			ions	Pennsylvania		□ VA	Drinking Water
(Printed) Nick Stella			(Prin	ted)							_		re rec				West Virginia		□ Oth	······································
Relinquished by: (Signature)	Date	/Time			by lal	o: (Sig	natu	re)					und 1 mal (1				Delivery Met □ Courier		.ab Use Гетр:	<u>`</u> 2.5 °c
	5-2	-	(Prjin	2/							A.	' 5 da	У				🛭 Client		⊠ Red	eived on Ice
(Printed)	15:4B			ted)	r	~	A (من د د		1	4 da	•				□ UPS			ceived Same Day
ecial Instructions / QC Requirements & Comments:							- V			3 da	•	in d			□ Fed Ex	<u> </u>		7-41		
opeda motractions / QC nequir	1 of 2								☐ Rush (2 day) ☐ USPS ☐ Other						Sample Disposal: ☐ Return to Client					
											•		er:				one _			posal by lab
											t		cific E		ate:					hive for davs

Company Name:		Project	Mana	ager	:							Anal	ysis R	eque	estec	1	CHAIN-OF-CUSTODY RECORD			ODY RECORD
ECS Baltimore		Nick S	tella	l					1	- 1		T								
Project Name: Soldle Creek		Project / \$\(\begin{align*} 2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-A															nter	Services, Inc. Drive, Suite G D 21227
Sampler(s):		P.O. Nu								2	2							247-7600 *	* Fax	x 410-247-7602
Nick Stella									ō	0	60					l r	eporting@i	ması	pectral.com	
State of Origin: MO										, 20	8-0						Matrix Codes: NPW - non-potable water DW - drinking water			
Field Sample ID:	Date	Time	DW	NPW	Soil	Other	Grab	Composite	# of containers	CYO-NAL	1P11-6/2	10Cs .					Preservative	Field No	tes	MSS Lab ID
1-09	5/2/24	1145			X		X		1	χ	У	X								4050228-11 A
		/130			K		X		1	V	γ	20								- 12
1-10 6w1-01		1210		χ			χ		4	ĸ	γ	∞								- 13
6w2-03		1230	1 1	X			λ		T	X	γ	10								- 14
GW2-03 GW1-08		1220		X			χ			V	Υ	X		·						-15
GW1-09	/	1200		χ			X)		\mathcal{I}	X	K	×								-16
												<u> </u>								
												ļ								
												<u> </u>								
Relinguished by: (Signature)	1	/Time	Relin	quish	ied b	γ: (Si	gnatu	re)					indic		•		Virginia VELA			MD Drinking Water
(Printed)	5/2	124	(Print	tod)							the		wing re rec			ions	Pennsylvania			VA Drinking Water
Nick Stella			' ' ' '	ccuj							Turi		und 1				 West Virginia Delivery Met		·	Other Use:
Relinquished by: (Signature)	1 .	/Time	Recei	ivjed l	by Jak	o: (Sig	matu	re)					mal (□ Courier			np: <u>2.5</u> °c
	5-2	-24	4	<u> []</u>	/ L			$\overline{}$			≥<	5 da	y				⊠ Client		1	Received on Ice
(Printed)	. رہ ا	0	(Prim			ŧ	_	,	١			`4 da	-				□ UPS		□ Z	Received Same Day
	113	48		<u>∕-0</u>	r	1 1	Fo	<u> </u>	4e,			3 da	-				□ Fed Ex			<u> </u>
Special Instructions / QC Require	ements a	s comme	ents:	2	ō	+	7)					h (2 d t Day				☐ USPS		1	nple Disposal:
			•	,	e)	1						Oth	•	•			□ Other_		ı	Return to Client Disposal by lab
													cific E	 Due [ate:				ļ.	Archive for days

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

08 May 2024

Nick Stella ECS-Baltimore 1340 Charwood Rd, Suite A Baltimore, MD 21076

RE: Saddle Creek

Enclosed are the results of analyses for samples received by the laboratory on 05/02/24 15:48.

Maryland Spectral Services, Inc. is a TNI 2016 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2016 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2016 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rabecka Koons

Quality Assurance Officer

lakecka Koms

Analytical Results

nelso IN ACCORDANCE

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

Project Number:	47:18315-A
Project Manager:	Nick Stella

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV2-01		4050231-01	Vapor	05/02/24 12:28	05/02/24 15:48
SV2-05		4050231-02	Vapor	05/02/24 12:31	05/02/24 15:48
SV1-01		4050231-04	Vapor	05/02/24 12:44	05/02/24 15:48
SV1-06		4050231-05	Vapor	05/02/24 12:47	05/02/24 15:48
SV1-10		4050231-06	Vapor	05/02/24 12:51	05/02/24 15:48

Narrative

Results for the following sample(s) are not included in this data package:

MSS ID	Client ID	<u>Matrix</u>
4050231-03	SV2-09	Vapor

The sample listed above was received with no sample collection. Upon inspection the canister was in working order. The flow controller was inspected and found to be within acceptable limits for sample collection. This may indicate an issue with the field sample collection procedure.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

Project Number: 47:18315-A Project Manager: Nick Stella

SV2-01

4050231-01 (Vapor) Collected from 05/02/24 08:42 thru 05/02/24 12:28

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	GC/MS) Pre	epared by T	O-15 F	rep					
Acetone	12.3		ug/m³	9.60	9.60	4	05/03/24	05/03/24 15:04	WB
Benzene	11.0		ug/m³	2.56	0.64	4	05/03/24	05/03/24 15:04	WB
Benzyl chloride	ND		ug/m³	4.00	1.00	4	05/03/24	05/03/24 15:04	WB
Bromodichloromethane	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 15:04	WB
Bromoform	ND		ug/m³	8.40	2.10	4	05/03/24	05/03/24 15:04	WB
Bromomethane	ND		ug/m³	3.12	0.78	4	05/03/24	05/03/24 15:04	WB
1,3-Butadiene	4.25		ug/m³	1.76	1.76	4	05/03/24	05/03/24 15:04	WB
Carbon disulfide	ND		ug/m³	6.24	6.24	4	05/03/24	05/03/24 15:04	WB
Carbon tetrachloride	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 15:04	WB
Chlorobenzene	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 15:04	WB
Chloroethane	ND		ug/m³	2.12	1.06	4	05/03/24	05/03/24 15:04	WB
Chloroform	5.86		ug/m³	3.88	0.97	4	05/03/24	05/03/24 15:04	WB
Chloromethane	ND		ug/m³	1.64	0.41	4	05/03/24	05/03/24 15:04	WB
3-Chloropropene	ND		ug/m³	2.52	0.63	4	05/03/24	05/03/24 15:04	WB
Cyclohexane	ND		ug/m³	2.76	0.69	4	05/03/24	05/03/24 15:04	WB
Dibromochloromethane	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 15:04	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	5.60	1.40	4	05/03/24	05/03/24 15:04	WB
1,2-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	05/03/24	05/03/24 15:04	WB
1,3-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	05/03/24	05/03/24 15:04	WB
1,4-Dichlorobenzene	33.4		ug/m³	4.80	1.20	4	05/03/24	05/03/24 15:04	WB
Dichlorodifluoromethane	ND		ug/m³	3.96	3.96	4	05/03/24	05/03/24 15:04	WB
1,1-Dichloroethane	ND		ug/m³	3.24	0.81	4	05/03/24	05/03/24 15:04	WB
1,2-Dichloroethane	ND		ug/m³	3.24	0.81	4	05/03/24	05/03/24 15:04	WB
1,1-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 15:04	WB
cis-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 15:04	WB
trans-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 15:04	WB
1,2-Dichloropropane	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 15:04	WB
cis-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	05/03/24	05/03/24 15:04	WB
trans-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	05/03/24	05/03/24 15:04	WB
1,4-Dioxane	ND		ug/m³	2.88	0.72	4	05/03/24	05/03/24 15:04	WB
Ethyl acetate	ND		ug/m³	14.4	14.4	4	05/03/24	05/03/24 15:04	WB
Ethylbenzene	1.56		ug/m³	3.48	0.87	4	05/03/24	05/03/24 15:04	WB
4-Ethyltoluene	ND		ug/m³	3.92	0.98	4	05/03/24	05/03/24 15:04	WB
Freon 113	ND		ug/m³	6.00	1.50	4	05/03/24	05/03/24 15:04	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rakecka Kons

Project Number: 47:18315-A

Analytical Results

1500 Caton Center Dr Suite G **Baltimore MD 21227** 410-247-7600 www.mdspectral.com

> Reported: 05/08/24 10:01

Project Manager: Nick Stella

SV2-01

4050231-01 (Vapor) Collected from 05/02/24 08:42 thru 05/02/24 12:28

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pr	epared b	y TO-15 F	rep (continued)					
Freon 114	ND		ug/m³	5.60	5.60	4	05/03/24	05/03/24 15:04	WB
n-Heptane	6.89		ug/m³	3.28	0.82	4	05/03/24	05/03/24 15:04	WB
Hexachlorobutadiene	ND		ug/m^3	8.40	8.40	4	05/03/24	05/03/24 15:04	WB
Hexane	ND		ug/m³	56.0	56.0	4	05/03/24	05/03/24 15:04	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	05/03/24	05/03/24 15:04	WB
Isopropylbenzene (Cumene)	ND		ug/m³	4.40	1.60	4	05/03/24	05/03/24 15:04	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	2.88	0.82	4	05/03/24	05/03/24 15:04	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	05/03/24	05/03/24 15:04	WB
Methyl ethyl ketone (2-Butanone)	ND		ug/m³	2.36	1.36	4	05/03/24	05/03/24 15:04	WB
Methyl isobutyl ketone	ND		ug/m³	3.28	3.28	4	05/03/24	05/03/24 15:04	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	05/03/24	05/03/24 15:04	WB
Propene	22.7		ug/m³	1.36	1.36	4	05/03/24	05/03/24 15:04	WB
n-Propylbenzene	ND		ug/m³	3.92	1.60	4	05/03/24	05/03/24 15:04	WB
Styrene	1.02	J	ug/m³	3.40	0.59	4	05/03/24	05/03/24 15:04	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	05/03/24	05/03/24 15:04	WB
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	05/03/24	05/03/24 15:04	WB
Tetrahydrofuran	ND		ug/m³	2.36	0.59	4	05/03/24	05/03/24 15:04	WB
Toluene	21.6		ug/m³	3.00	1.40	4	05/03/24	05/03/24 15:04	WB
1,2,4-Trichlorobenzene	ND		ug/m³	6.00	1.50	4	05/03/24	05/03/24 15:04	WB
1,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:04	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:04	WB
Trichloroethene	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:04	WB
Trichlorofluoromethane (Freon 11)	1.35	J	ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:04	WB
1,2,4-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	05/03/24	05/03/24 15:04	WB
1,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	05/03/24	05/03/24 15:04	WB
2,2,4-Trimethylpentane	2.06	J	ug/m³	3.72	0.93	4	05/03/24	05/03/24 15:04	WB
Vinyl acetate	ND		ug/m³	2.80	2.80	4	05/03/24	05/03/24 15:04	WB
Vinyl bromide	ND		ug/m³	3.48	0.87	4	05/03/24	05/03/24 15:04	WB
Vinyl chloride	0.51	J	ug/m³	2.04	0.51	4	05/03/24	05/03/24 15:04	WB
o-Xylene	1.22	J	ug/m³	3.48	0.87	4	05/03/24	05/03/24 15:04	WB
m- & p-Xylenes	3.13	J	ug/m³	6.80	1.70	4	05/03/24	05/03/24 15:04	WB
Surrogate: 4-Bromofluorobenzene		7	3-115	93 %	05/03/24	4	05/03/24 15:04		

> The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV2-05

4050231-02 (Vapor) Collected from 05/02/24 08:46 thru 05/02/24 12:31

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-	15 (GC/MS) Prepared	d by TO-15 F	rep					
Acetone	15.8	ug/m³	9.60	9.60	4	05/03/24	05/03/24 15:32	WB
Benzene	ND	ug/m³	2.56	0.64	4	05/03/24	05/03/24 15:32	WB
Benzyl chloride	ND	ug/m³	4.00	1.00	4	05/03/24	05/03/24 15:32	WB
Bromodichloromethane	ND	ug/m³	5.20	1.30	4	05/03/24	05/03/24 15:32	WB
Bromoform	ND	ug/m³	8.40	2.10	4	05/03/24	05/03/24 15:32	WB
Bromomethane	ND	ug/m³	3.12	0.78	4	05/03/24	05/03/24 15:32	WB
1,3-Butadiene	ND	ug/m³	1.76	1.76	4	05/03/24	05/03/24 15:32	WB
Carbon disulfide	ND	ug/m³	6.24	6.24	4	05/03/24	05/03/24 15:32	WB
Carbon tetrachloride	ND	ug/m³	5.20	1.30	4	05/03/24	05/03/24 15:32	WB
Chlorobenzene	ND	ug/m³	3.68	0.92	4	05/03/24	05/03/24 15:32	WB
Chloroethane	ND	ug/m³	2.12	1.06	4	05/03/24	05/03/24 15:32	WB
Chloroform	ND	ug/m³	3.88	0.97	4	05/03/24	05/03/24 15:32	WB
Chloromethane	0.99	J ug/m³	1.64	0.41	4	05/03/24	05/03/24 15:32	WB
3-Chloropropene	ND	ug/m³	2.52	0.63	4	05/03/24	05/03/24 15:32	WB
Cyclohexane	ND	ug/m³	2.76	0.69	4	05/03/24	05/03/24 15:32	WB
Dibromochloromethane	ND	ug/m³	5.20	1.30	4	05/03/24	05/03/24 15:32	WB
1,2-Dibromoethane (EDB)	ND	ug/m³	5.60	1.40	4	05/03/24	05/03/24 15:32	WB
1,2-Dichlorobenzene	ND	ug/m³	4.80	1.20	4	05/03/24	05/03/24 15:32	WB
1,3-Dichlorobenzene	ND	ug/m³	4.80	1.20	4	05/03/24	05/03/24 15:32	WB
1,4-Dichlorobenzene	50.7	ug/m³	4.80	1.20	4	05/03/24	05/03/24 15:32	WB
Dichlorodifluoromethane	ND	ug/m³	3.96	3.96	4	05/03/24	05/03/24 15:32	WB
1,1-Dichloroethane	ND	ug/m³	3.24	0.81	4	05/03/24	05/03/24 15:32	WB
1,2-Dichloroethane	ND	ug/m³	3.24	0.81	4	05/03/24	05/03/24 15:32	WB
1,1-Dichloroethene	ND	ug/m³	3.16	0.79	4	05/03/24	05/03/24 15:32	WB
cis-1,2-Dichloroethene	ND	ug/m³	3.16	0.79	4	05/03/24	05/03/24 15:32	WB
trans-1,2-Dichloroethene	ND	ug/m³	3.16	0.79	4	05/03/24	05/03/24 15:32	WB
1,2-Dichloropropane	ND	ug/m³	3.68	0.92	4	05/03/24	05/03/24 15:32	WB
cis-1,3-Dichloropropene	ND	ug/m³	3.64	0.91	4	05/03/24	05/03/24 15:32	WB
trans-1,3-Dichloropropene	ND	ug/m³	3.64	0.91	4	05/03/24	05/03/24 15:32	WB
1,4-Dioxane	ND	ug/m³	2.88	0.72	4	05/03/24	05/03/24 15:32	WB
Ethyl acetate	ND	ug/m³	14.4	14.4	4	05/03/24	05/03/24 15:32	WB
Ethylbenzene	ND	ug/m³	3.48	0.87	4	05/03/24	05/03/24 15:32	WB
4-Ethyltoluene	ND	ug/m³	3.92	0.98	4	05/03/24	05/03/24 15:32	WB
÷								

Long

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV2-05

4050231-02 (Vapor) Collected from 05/02/24 08:46 thru 05/02/24 12:31

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	epared b	y TO-15 F	rep (continued)					
Freon 113	ND		ug/m^3	6.00	1.50	4	05/03/24	05/03/24 15:32	WB
Freon 114	ND		ug/m^3	5.60	5.60	4	05/03/24	05/03/24 15:32	WB
n-Heptane	0.98	J	ug/m^3	3.28	0.82	4	05/03/24	05/03/24 15:32	WB
Hexachlorobutadiene	ND		ug/m^3	8.40	8.40	4	05/03/24	05/03/24 15:32	WB
Hexane	ND		ug/m³	56.0	56.0	4	05/03/24	05/03/24 15:32	WB
2-Hexanone	ND		ug/m^3	3.28	0.59	4	05/03/24	05/03/24 15:32	WB
Isopropylbenzene (Cumene)	ND		ug/m^3	4.40	1.60	4	05/03/24	05/03/24 15:32	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	2.88	0.82	4	05/03/24	05/03/24 15:32	WB
Methylene chloride	ND		ug/m^3	72.0	72.0	4	05/03/24	05/03/24 15:32	WB
Methyl ethyl ketone (2-Butanone)	ND		ug/m³	2.36	1.36	4	05/03/24	05/03/24 15:32	WB
Methyl isobutyl ketone	ND		ug/m³	3.28	3.28	4	05/03/24	05/03/24 15:32	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	05/03/24	05/03/24 15:32	WB
Propene	9.29		ug/m³	1.36	1.36	4	05/03/24	05/03/24 15:32	WB
n-Propylbenzene	ND		ug/m^3	3.92	1.60	4	05/03/24	05/03/24 15:32	WB
Styrene	1.70	J	ug/m³	3.40	0.59	4	05/03/24	05/03/24 15:32	WB
1,1,2,2-Tetrachloroethane	ND		ug/m^3	5.60	1.40	4	05/03/24	05/03/24 15:32	WB
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	05/03/24	05/03/24 15:32	WB
Tetrahydrofuran	ND		ug/m^3	2.36	0.59	4	05/03/24	05/03/24 15:32	WB
Toluene	3.77		ug/m³	3.00	1.40	4	05/03/24	05/03/24 15:32	WB
1,2,4-Trichlorobenzene	ND		ug/m^3	6.00	1.50	4	05/03/24	05/03/24 15:32	WB
1,1,1-Trichloroethane	ND		ug/m^3	4.40	1.10	4	05/03/24	05/03/24 15:32	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:32	WB
Trichloroethene	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:32	WB
Trichlorofluoromethane (Freon 11)	1.35	J	ug/m³	4.40	1.10	4	05/03/24	05/03/24 15:32	WB
1,2,4-Trimethylbenzene	ND		ug/m^3	3.92	0.98	4	05/03/24	05/03/24 15:32	WB
1,3,5-Trimethylbenzene	ND		ug/m^3	3.92	0.98	4	05/03/24	05/03/24 15:32	WB
2,2,4-Trimethylpentane	ND		ug/m³	3.72	0.93	4	05/03/24	05/03/24 15:32	WB
Vinyl acetate	ND		ug/m³	2.80	2.80	4	05/03/24	05/03/24 15:32	WB
Vinyl bromide	ND		ug/m³	3.48	0.87	4	05/03/24	05/03/24 15:32	WB
Vinyl chloride	ND		ug/m³	2.04	0.51	4	05/03/24	05/03/24 15:32	WB
o-Xylene	ND		ug/m³	3.48	0.87	4	05/03/24	05/03/24 15:32	WB
m- & p-Xylenes	1.91	J	ug/m³	6.80	1.70	4	05/03/24	05/03/24 15:32	WB
Surrogate: 4-Bromofluorobenzene		7.	3-115	93 %	05/03/24	4	05/03/24 15:32		

Pakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

Project Number: 47:18315-A Project Manager: Nick Stella

SV1-01

4050231-04 (Vapor) Collected from 05/02/24 08:59 thru 05/02/24 12:44

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	15 (GC/MS) Pi	renared b	v TO-15 I	Pren				<u> </u>	
Acetone	31.5		ug/m³	9.60	9.60	4	05/03/24	05/03/24 16:00	WB
Benzene	5.75		ug/m³	2.56	0.64	4	05/03/24	05/03/24 16:00	WB
Benzyl chloride	ND		ug/m^3	4.00	1.00	4	05/03/24	05/03/24 16:00	WB
Bromodichloromethane	ND		ug/m^3	5.20	1.30	4	05/03/24	05/03/24 16:00	WB
Bromoform	ND		ug/m^3	8.40	2.10	4	05/03/24	05/03/24 16:00	WB
Bromomethane	ND		ug/m³	3.12	0.78	4	05/03/24	05/03/24 16:00	WB
1,3-Butadiene	ND		ug/m³	1.76	1.76	4	05/03/24	05/03/24 16:00	WB
Carbon disulfide	6.48		ug/m³	6.24	6.24	4	05/03/24	05/03/24 16:00	WB
Carbon tetrachloride	ND		ug/m^3	5.20	1.30	4	05/03/24	05/03/24 16:00	WB
Chlorobenzene	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 16:00	WB
Chloroethane	ND		ug/m³	2.12	1.06	4	05/03/24	05/03/24 16:00	WB
Chloroform	1.76	J	ug/m³	3.88	0.97	4	05/03/24	05/03/24 16:00	WB
Chloromethane	0.50	J	ug/m^3	1.64	0.41	4	05/03/24	05/03/24 16:00	WB
3-Chloropropene	ND		ug/m³	2.52	0.63	4	05/03/24	05/03/24 16:00	WB
Cyclohexane	1.51	J	ug/m^3	2.76	0.69	4	05/03/24	05/03/24 16:00	WB
Dibromochloromethane	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 16:00	WB
1,2-Dibromoethane (EDB)	ND		ug/m^3	5.60	1.40	4	05/03/24	05/03/24 16:00	WB
1,2-Dichlorobenzene	ND		ug/m^3	4.80	1.20	4	05/03/24	05/03/24 16:00	WB
1,3-Dichlorobenzene	ND		ug/m^3	4.80	1.20	4	05/03/24	05/03/24 16:00	WB
1,4-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	05/03/24	05/03/24 16:00	WB
Dichlorodifluoromethane	ND		ug/m³	3.96	3.96	4	05/03/24	05/03/24 16:00	WB
1,1-Dichloroethane	ND		ug/m³	3.24	0.81	4	05/03/24	05/03/24 16:00	WB
1,2-Dichloroethane	ND		ug/m³	3.24	0.81	4	05/03/24	05/03/24 16:00	WB
1,1-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 16:00	WB
cis-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 16:00	WB
rans-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 16:00	WB
1,2-Dichloropropane	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 16:00	WB
cis-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	05/03/24	05/03/24 16:00	WB
rans-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	05/03/24	05/03/24 16:00	WB
.4-Dioxane	ND		ug/m³	2.88	0.72	4	05/03/24	05/03/24 16:00	WB
Ethyl acetate	ND		ug/m³	14.4	14.4	4	05/03/24	05/03/24 16:00	WB
Ethylbenzene	2.43	J	ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:00	WB
4-Ethyltoluene	1.57	J	ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:00	WB
Freon 113	ND	J	ug/m³	6.00	1.50	4	05/03/24	05/03/24 16:00	WB

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV1-01

4050231-04 (Vapor) Collected from 05/02/24 08:59 thru 05/02/24 12:44

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 I	Prep (continued)					
Freon 114	ND		ug/m³	5.60	5.60	4	05/03/24	05/03/24 16:00	WB
1-Heptane	14.9		ug/m³	3.28	0.82	4	05/03/24	05/03/24 16:00	WB
Hexachlorobutadiene	ND		ug/m³	8.40	8.40	4	05/03/24	05/03/24 16:00	WB
Hexane	ND		ug/m³	56.0	56.0	4	05/03/24	05/03/24 16:00	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	05/03/24	05/03/24 16:00	WB
sopropylbenzene (Cumene)	ND		ug/m³	4.40	1.60	4	05/03/24	05/03/24 16:00	WB
Methyl tert-butyl ether (MTBE)	0.87	J	ug/m³	2.88	0.82	4	05/03/24	05/03/24 16:00	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	05/03/24	05/03/24 16:00	WB
Methyl ethyl ketone (2-Butanone)	7.08		ug/m³	2.36	1.36	4	05/03/24	05/03/24 16:00	WB
Methyl isobutyl ketone	ND		ug/m^3	3.28	3.28	4	05/03/24	05/03/24 16:00	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	05/03/24	05/03/24 16:00	WB
Propene	253	Е	ug/m³	1.36	1.36	4	05/03/24	05/03/24 16:00	WB
-Propylbenzene	ND		ug/m³	3.92	1.60	4	05/03/24	05/03/24 16:00	WB
tyrene	1.02	J	ug/m³	3.40	0.59	4	05/03/24	05/03/24 16:00	WB
,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	05/03/24	05/03/24 16:00	WB
Tetrachloroethene	8.95		ug/m³	5.60	2.80	4	05/03/24	05/03/24 16:00	WB
Cetrahydrofuran	ND		ug/m³	2.36	0.59	4	05/03/24	05/03/24 16:00	WB
Coluene	15.5		ug/m³	3.00	1.40	4	05/03/24	05/03/24 16:00	WB
,2,4-Trichlorobenzene	ND		ug/m³	6.00	1.50	4	05/03/24	05/03/24 16:00	WB
,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:00	WB
,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:00	WB
richloroethene	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:00	WB
Trichlorofluoromethane (Freon 11)	1.35	J	ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:00	WB
,2,4-Trimethylbenzene	1.18	J	ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:00	WB
,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:00	WB
2,2,4-Trimethylpentane	ND		ug/m³	3.72	0.93	4	05/03/24	05/03/24 16:00	WB
inyl acetate	ND		ug/m³	2.80	2.80	4	05/03/24	05/03/24 16:00	WB
/inyl bromide	ND		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:00	WB
/inyl chloride	ND		ug/m³	2.04	0.51	4	05/03/24	05/03/24 16:00	WB
-Xylene	1.74	J	ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:00	WB
n- & p-Xylenes	4.69	J	ug/m³	6.80	1.70	4	05/03/24	05/03/24 16:00	WB
urrogate: 4-Bromofluorobenzene		7	3-115	93 %	05/03/24	!	05/03/24 16:00		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rakecka Koms

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

nela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV1-06

4050231-05 (Vapor) Collected from 05/02/24 09:05 thru 05/02/24 12:47

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (GC	Z/MS) Pı	repared by	y TO-15 P	rep					
Acetone	ND		ug/m³	9.60	9.60	4	05/03/24	05/03/24 16:28	WB
Benzene	53.7		ug/m³	2.56	0.64	4	05/03/24	05/03/24 16:28	WB
Benzyl chloride	ND		ug/m³	4.00	1.00	4	05/03/24	05/03/24 16:28	WB
Bromodichloromethane	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 16:28	WB
Bromoform	ND		ug/m³	8.40	2.10	4	05/03/24	05/03/24 16:28	WB
Bromomethane	ND		ug/m³	3.12	0.78	4	05/03/24	05/03/24 16:28	WB
1,3-Butadiene	ND		ug/m³	1.76	1.76	4	05/03/24	05/03/24 16:28	WB
Carbon disulfide	24.4		ug/m³	6.24	6.24	4	05/03/24	05/03/24 16:28	WB
Carbon tetrachloride	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 16:28	WB
Chlorobenzene	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 16:28	WB
Chloroethane	ND		ug/m³	2.12	1.06	4	05/03/24	05/03/24 16:28	WB
Chloroform	ND		ug/m³	3.88	0.97	4	05/03/24	05/03/24 16:28	WB
Chloromethane	ND		ug/m³	1.64	0.41	4	05/03/24	05/03/24 16:28	WB
3-Chloropropene	ND		ug/m³	2.52	0.63	4	05/03/24	05/03/24 16:28	WB
Cyclohexane	26.7		ug/m³	2.76	0.69	4	05/03/24	05/03/24 16:28	WB
Dibromochloromethane	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 16:28	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	5.60	1.40	4	05/03/24	05/03/24 16:28	WB
1,2-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	05/03/24	05/03/24 16:28	WB
1,3-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	05/03/24	05/03/24 16:28	WB
1,4-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	05/03/24	05/03/24 16:28	WB
Dichlorodifluoromethane	ND		ug/m³	3.96	3.96	4	05/03/24	05/03/24 16:28	WB
1,1-Dichloroethane	ND		ug/m³	3.24	0.81	4	05/03/24	05/03/24 16:28	WB
1,2-Dichloroethane	ND		ug/m³	3.24	0.81	4	05/03/24	05/03/24 16:28	WB
1,1-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 16:28	WB
cis-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 16:28	WB
trans-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	05/03/24	05/03/24 16:28	WB
1,2-Dichloropropane	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 16:28	WB
cis-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	05/03/24	05/03/24 16:28	WB
trans-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	05/03/24	05/03/24 16:28	WB
1,4-Dioxane	ND		ug/m³	2.88	0.72	4	05/03/24	05/03/24 16:28	WB
Ethyl acetate	ND		ug/m³	14.4	14.4	4	05/03/24	05/03/24 16:28	WB
Ethylbenzene	7.82		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:28	WB
4-Ethyltoluene	2.16	J	ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:28	WB

fa Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

inela Car

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV1-06

4050231-05 (Vapor) Collected from 05/02/24 09:05 thru 05/02/24 12:47

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 F	rep (continued)					
Freon 113	ND		ug/m³	6.00	1.50	4	05/03/24	05/03/24 16:28	WB
Freon 114	ND		ug/m³	5.60	5.60	4	05/03/24	05/03/24 16:28	WB
n-Heptane	211		ug/m³	3.28	0.82	4	05/03/24	05/03/24 16:28	WB
Hexachlorobutadiene	ND		ug/m^3	8.40	8.40	4	05/03/24	05/03/24 16:28	WB
Hexane	584	E	ug/m^3	56.0	56.0	4	05/03/24	05/03/24 16:28	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	05/03/24	05/03/24 16:28	WB
Isopropylbenzene (Cumene)	ND		ug/m^3	4.40	1.60	4	05/03/24	05/03/24 16:28	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	2.88	0.82	4	05/03/24	05/03/24 16:28	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	05/03/24	05/03/24 16:28	WB
Methyl ethyl ketone (2-Butanone)	7.20		ug/m³	2.36	1.36	4	05/03/24	05/03/24 16:28	WB
Methyl isobutyl ketone	ND		ug/m^3	3.28	3.28	4	05/03/24	05/03/24 16:28	WB
Naphthalene	ND		ug/m^3	4.40	2.80	4	05/03/24	05/03/24 16:28	WB
Propene	3500	E	ug/m³	1.36	1.36	4	05/03/24	05/03/24 16:28	WB
n-Propylbenzene	ND		ug/m^3	3.92	1.60	4	05/03/24	05/03/24 16:28	WB
Styrene	2.22	J	ug/m^3	3.40	0.59	4	05/03/24	05/03/24 16:28	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	05/03/24	05/03/24 16:28	WB
Tetrachloroethene	ND		ug/m^3	5.60	2.80	4	05/03/24	05/03/24 16:28	WB
Tetrahydrofuran	ND		ug/m^3	2.36	0.59	4	05/03/24	05/03/24 16:28	WB
Toluene	74.5		ug/m³	3.00	1.40	4	05/03/24	05/03/24 16:28	WB
1,2,4-Trichlorobenzene	ND		ug/m^3	6.00	1.50	4	05/03/24	05/03/24 16:28	WB
1,1,1-Trichloroethane	ND		ug/m^3	4.40	1.10	4	05/03/24	05/03/24 16:28	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:28	WB
Trichloroethene	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:28	WB
Trichlorofluoromethane (Freon 11)	1.57	J	ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:28	WB
1,2,4-Trimethylbenzene	1.57	J	ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:28	WB
1,3,5-Trimethylbenzene	ND		ug/m^3	3.92	0.98	4	05/03/24	05/03/24 16:28	WB
2,2,4-Trimethylpentane	ND		ug/m^3	3.72	0.93	4	05/03/24	05/03/24 16:28	WB
Vinyl acetate	ND		ug/m³	2.80	2.80	4	05/03/24	05/03/24 16:28	WB
Vinyl bromide	ND		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:28	WB
Vinyl chloride	ND		ug/m³	2.04	0.51	4	05/03/24	05/03/24 16:28	WB
o-Xylene	3.65		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:28	WB
m- & p-Xylenes	10.3		ug/m³	6.80	1.70	4	05/03/24	05/03/24 16:28	WB
Surrogate: 4-Bromofluorobenzene		7.	3-115	96 %	05/03/24		05/03/24 16:28		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

enero MACCORO

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV1-10

4050231-06 (Vapor) Collected from 05/02/24 09:09 thru 05/02/24 12:51

				Reporting	Detection								
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst				
Volatile Organics by EPA TO-15 (GC/MS) Prepared by TO-15 Prep													
Acetone	81.1	-	ug/m³	9.60	9.60	4	05/03/24	05/03/24 16:57	WB				
Benzene	3.96		ug/m³	2.56	0.64	4	05/03/24	05/03/24 16:57	WB				
Benzyl chloride	ND		ug/m^3	4.00	1.00	4	05/03/24	05/03/24 16:57	WB				
Bromodichloromethane	ND		ug/m^3	5.20	1.30	4	05/03/24	05/03/24 16:57	WB				
Bromoform	ND		ug/m^3	8.40	2.10	4	05/03/24	05/03/24 16:57	WB				
Bromomethane	ND		ug/m^3	3.12	0.78	4	05/03/24	05/03/24 16:57	WB				
1,3-Butadiene	ND		ug/m^3	1.76	1.76	4	05/03/24	05/03/24 16:57	WB				
Carbon disulfide	ND		ug/m^3	6.24	6.24	4	05/03/24	05/03/24 16:57	WB				
Carbon tetrachloride	ND		ug/m³	5.20	1.30	4	05/03/24	05/03/24 16:57	WB				
Chlorobenzene	ND		ug/m³	3.68	0.92	4	05/03/24	05/03/24 16:57	WB				
Chloroethane	ND		ug/m³	2.12	1.06	4	05/03/24	05/03/24 16:57	WB				
Chloroform	0.98	J	ug/m³	3.88	0.97	4	05/03/24	05/03/24 16:57	WB				
Chloromethane	0.99	J	ug/m^3	1.64	0.41	4	05/03/24	05/03/24 16:57	WB				
3-Chloropropene	ND		ug/m^3	2.52	0.63	4	05/03/24	05/03/24 16:57	WB				
Cyclohexane	3.58		ug/m^3	2.76	0.69	4	05/03/24	05/03/24 16:57	WB				
Dibromochloromethane	ND		ug/m^3	5.20	1.30	4	05/03/24	05/03/24 16:57	WB				
1,2-Dibromoethane (EDB)	ND		ug/m^3	5.60	1.40	4	05/03/24	05/03/24 16:57	WB				
1,2-Dichlorobenzene	ND		ug/m^3	4.80	1.20	4	05/03/24	05/03/24 16:57	WB				
1,3-Dichlorobenzene	ND		ug/m^3	4.80	1.20	4	05/03/24	05/03/24 16:57	WB				
1,4-Dichlorobenzene	88.3		ug/m^3	4.80	1.20	4	05/03/24	05/03/24 16:57	WB				
Dichlorodifluoromethane	ND		ug/m^3	3.96	3.96	4	05/03/24	05/03/24 16:57	WB				
1,1-Dichloroethane	ND		ug/m^3	3.24	0.81	4	05/03/24	05/03/24 16:57	WB				
1,2-Dichloroethane	ND		ug/m^3	3.24	0.81	4	05/03/24	05/03/24 16:57	WB				
1,1-Dichloroethene	ND		ug/m^3	3.16	0.79	4	05/03/24	05/03/24 16:57	WB				
cis-1,2-Dichloroethene	ND		ug/m^3	3.16	0.79	4	05/03/24	05/03/24 16:57	WB				
rans-1,2-Dichloroethene	ND		ug/m^3	3.16	0.79	4	05/03/24	05/03/24 16:57	WB				
1,2-Dichloropropane	1.11	J	ug/m^3	3.68	0.92	4	05/03/24	05/03/24 16:57	WB				
eis-1,3-Dichloropropene	ND		ug/m^3	3.64	0.91	4	05/03/24	05/03/24 16:57	WB				
rans-1,3-Dichloropropene	ND		ug/m^3	3.64	0.91	4	05/03/24	05/03/24 16:57	WB				
1,4-Dioxane	ND		ug/m³	2.88	0.72	4	05/03/24	05/03/24 16:57	WB				
Ethyl acetate	46.1		ug/m³	14.4	14.4	4	05/03/24	05/03/24 16:57	WB				
Ethylbenzene	22.4		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:57	WB				
4-Ethyltoluene	ND		ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:57	WB				
Freon 113	ND		ug/m^3	6.00	1.50	4	05/03/24	05/03/24 16:57	WB				

abecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:18315-A

Project Manager: Nick Stella

Analytical Results

e nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

SV1-10

4050231-06 (Vapor) Collected from 05/02/24 09:09 thru 05/02/24 12:51

				Reporting	Detection								
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst				
Volatile Organics by EPA TO-15 (GC/MS) Prepared by TO-15 Prep (continued)													
Freon 114	ND		ug/m³	5.60	5.60	4	05/03/24	05/03/24 16:57	WB				
n-Heptane	28.5		ug/m³	3.28	0.82	4	05/03/24	05/03/24 16:57	WB				
Hexachlorobutadiene	ND		ug/m³	8.40	8.40	4	05/03/24	05/03/24 16:57	WB				
Hexane	ND		ug/m³	56.0	56.0	4	05/03/24	05/03/24 16:57	WB				
2-Hexanone	ND		ug/m³	3.28	0.59	4	05/03/24	05/03/24 16:57	WB				
Isopropylbenzene (Cumene)	1.97	J	ug/m³	4.40	1.60	4	05/03/24	05/03/24 16:57	WB				
Methyl tert-butyl ether (MTBE)	ND		ug/m³	2.88	0.82	4	05/03/24	05/03/24 16:57	WB				
Methylene chloride	ND		ug/m³	72.0	72.0	4	05/03/24	05/03/24 16:57	WB				
Methyl ethyl ketone (2-Butanone)	10.0		ug/m^3	2.36	1.36	4	05/03/24	05/03/24 16:57	WB				
Methyl isobutyl ketone	3.44		ug/m³	3.28	3.28	4	05/03/24	05/03/24 16:57	WB				
Naphthalene	ND		ug/m³	4.40	2.80	4	05/03/24	05/03/24 16:57	WB				
Propene	408	E	ug/m³	1.36	1.36	4	05/03/24	05/03/24 16:57	WB				
n-Propylbenzene	ND		ug/m³	3.92	1.60	4	05/03/24	05/03/24 16:57	WB				
Styrene	ND		ug/m³	3.40	0.59	4	05/03/24	05/03/24 16:57	WB				
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	05/03/24	05/03/24 16:57	WB				
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	05/03/24	05/03/24 16:57	WB				
Tetrahydrofuran	ND		ug/m³	2.36	0.59	4	05/03/24	05/03/24 16:57	WB				
Toluene	31.7		ug/m³	3.00	1.40	4	05/03/24	05/03/24 16:57	WB				
1,2,4-Trichlorobenzene	ND		ug/m³	6.00	1.50	4	05/03/24	05/03/24 16:57	WB				
1,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:57	WB				
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:57	WB				
Trichloroethene	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:57	WB				
Trichlorofluoromethane (Freon 11)	ND		ug/m³	4.40	1.10	4	05/03/24	05/03/24 16:57	WB				
1,2,4-Trimethylbenzene	2.36	J	ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:57	WB				
1,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	05/03/24	05/03/24 16:57	WB				
2,2,4-Trimethylpentane	4.67		ug/m³	3.72	0.93	4	05/03/24	05/03/24 16:57	WB				
Vinyl acetate	ND		ug/m³	2.80	2.80	4	05/03/24	05/03/24 16:57	WB				
Vinyl bromide	ND		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:57	WB				
Vinyl chloride	ND		ug/m³	2.04	0.51	4	05/03/24	05/03/24 16:57	WB				
o-Xylene	17.0		ug/m³	3.48	0.87	4	05/03/24	05/03/24 16:57	WB				
m- & p-Xylenes	38.9		ug/m³	6.80	1.70	4	05/03/24	05/03/24 16:57	WB				
Summagata: A Promofluorobangana			2 115	100.0/	05/02/24		05/02/24 16:57						

 Surrogate: 4-Bromofluorobenzene
 73-115
 100 %
 05/03/24
 05/03/24 16:57

Pakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Chemistry Services

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 05/08/24 10:01

Project: Saddle CreekProject Number: 47:18315-A

Project Manager: Nick Stella

Notes and Definitions

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

RE Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified

with a sample qualifier.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accredidation

If this report contains any samples analyzed for gasoline range organics (GRO) by EPA Method 8015C and no trip blank was shipped, stored, and received with the sample(s) as required by Section 3.1 of the EPA Method, the sample analysis contained in this report cannot exclude the possibility that any reportable GRO measurement was due to environmental contamination of the sample during shipping or storage.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Air Analysis by TO-15

Client Contact Information Company: & C.S. Ballimore								Carrier:									of	COCs		
			Phone: Site Contact:				Samplers Name(s) Mick Stolla						Analysis/ Matrix							
Project Name: Sa Adle Creek		Analysis Turnaround Time											TS.							
Project Name: 5addle Creek Site: 18315-A PO#		Standard (Specify) 5 day					1							Ä	١.					
PO#		Rush (Specify)										ATE	≥nt A	slab						
Client Sample ID	Sam Date :		Time Start (24 hr clock)	Sam Date t		Time Stop (24 hr clock)	Fleid ("Hg)	Canister Pressure in Field ("Hg) (Stop)	Incoming Canister Pressure ("Hg) (Lab)	Sample Regulator ID	Can ID	Can Size	TO-15 FULL LIST	TO-15 ABREVIATED LIST	Indoor / Ambi	Soil Gas / Subslab		comments.		
SV2-01	5/2/	24	0841	5/2/	24	/ユン8	30	6		5-DX	193	1.4				λ		40	50231-0)1 A
SV2-05 SV2-09			0446			1231	\$ 030	4		5-AC	105		7			γ	*ther	δź	٧	
SV 2-09			orya			12-35	30	27		8-CY	166		λ			λ	****	Ò	3	
Sv1-01			0859			1244	30	4		SIEE	096		X			X	-29400	Ď١	1	
511-06			0905			1247		4		S-EW	052		Λ			X	-	- 0	5	
501-10	/		aga	/		1251	30	2		5-AW	086	J	X			λ		Ò	6	
					···········															
	ļ																			
•																				
Special instructions/QC Requirement	ents &	Cor	nments:									1				-				
Canisters Shipped by:	Date/	ite/Time;					Canisters	Received by	Date/Time: 15:48							-				
Samples Relinquished by:	Date/Time:						Received	by:	Date/Time	Date/Time: 5 - 2 - 2 4										
Relinquished by:	Date/Time:					Received	by:	Date/Time	Date/Tlme:							Page	14 of 1			