Grade 8 Standards Parent Resource

Unit 5: The Real Number System

Unit 5 includes 2 topics of study, listed below. This resource is for Topic 2.

Topic 1
Magnitude and Scientific Notation

Topic 2

Rational and Irrational Numbers

Topic	Learning Goals by Common Core State Standard Students will be able to...
	- Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. - Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=$ p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that V 2 is irrational. - Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions. Instructional videos in the hyperlinks above are meant to support C2.O content, but may use vocabulary or strategies not emphasized by MCPS.

The Common Core State Standards require a balance of three fundamental components that result in rigorous mathematics acquisition: deep conceptual understanding, procedural skill, and mathematical applications and modeling.

Grade 8 standards Parent Resource

Unit 5: The Real Number System
Topic 2: Rational and Irrational Numbers

Learning Experiences by Common Core State Standard

	Learning Experiences by In school, your child will...	mmon Core State Standard At home, your child can...
	- Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. - Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational. $\begin{array}{c\|c} \text { Solve } & \text { Check } \\ x^{2}=81 & x=9 \\ \sqrt{x^{2}}=\sqrt{81} & x^{2}=81 \\ x= \pm 9 & \begin{array}{rl} (9)^{2}=81 \\ x & 81=81 \text { LEARN ZIILION } \end{array} \end{array}$ - Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.	- Use a standard clock, to change the numbers on the face to the perfect squares. To reinforce square roots of perfect squares. - Use graph paper, to approximate and draw perfect squares to determine if a number is rational or irrational. Have your child find the area, using length times width and find the perfect square or approximate non-perfect squares. Additional Resources - What's a Rational Number? (video tutorial) - Introduction to Rational and Irrational Numbers (video tutorial) - How do you turn a repeating decimal into a fraction? (video tutorial) - LearnZillion: Solve equations with squares and square roots (video tutorial) - Approximating Irrational Number on Number Line (video tutorial) - NRICH: Mini Cross-number (online game) - NRICH: One Wasn't a Square (online game) - NRICH: Cycling Squares (online game) - Rational or Irrational? (online check) - Estimate Positive and Negative Square Roots (online check) - Estimate Cube Roots (online check) - Grade 8 Standards Unit 5 Topic 2 Rational and Irrational Numbers (flexbook)

