## Expectations

1.1 The student will represent functions and relations numerically, graphically, and algebraically.
1.2 The student will describe and apply properties of functions and relations.
1.3 The student will perform a variety of operations and geometrical transformations on functions and relations.
1.4 The student will use numerical, algebraic, and graphical representations of functions and relations in order to solve real-world problems.

## Essential Questions

Why are relations and functions represented in multiple ways?

How are the properties of functions and functional operations useful?

## Enduring Understandings

Relations and functions can be represented numerically, graphically, algebraically, and/or verbally.

The properties of functions and function operations are used to model and analyze real-world applications and quantitative relationships.

## Indicators

1.1.PC. 8 represent a piece-wise function numerically, algebraically, and graphically.
1.2.PC. 3 describe the properties of linear, quadratic, power, polynomial, rational, exponential, logarithmic, trigonometric, and inverse trigonometric functions.
1.2.PC. 4 describe the properties of a piece-wise function.
1.2.PC. 6 identify and distinguish between the graphs of linear, quadratic, power, polynomial, rational, exponential, logarithmic, trigonometric, and inverse trigonometric functions.
1.3.PC. 1 describe the effect of single or multiple transformations on the graph of $f(x)$, including af $(x), f(x-h), f(x)+k, f(a x),|f(x)|$, and $f(|x|)$.
1.3.PC. 5 describe the effect of transformations on a function with a restricted domain.
1.4.PC. 9 interpret and solve problems involving piece-wise functions.
1.4.PC. 12 make predictions using trigonometric or power mathematical models given a set of data.

